checkpoints_26_9_microsoft_deberta_21_9
This model is a fine-tuned version of microsoft/deberta-v3-large on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.6029
- Map@3: 0.865
- Accuracy: 0.79
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 32
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss | Map@3 | Accuracy |
---|---|---|---|---|---|
1.0387 | 0.11 | 100 | 0.8482 | 0.8242 | 0.725 |
0.8243 | 0.21 | 200 | 0.7331 | 0.8667 | 0.79 |
0.8484 | 0.32 | 300 | 0.6765 | 0.8858 | 0.82 |
0.7295 | 0.43 | 400 | 0.6490 | 0.8575 | 0.775 |
0.7206 | 0.53 | 500 | 0.6752 | 0.8625 | 0.79 |
0.6933 | 0.64 | 600 | 0.6329 | 0.8742 | 0.815 |
0.6817 | 0.75 | 700 | 0.6131 | 0.8675 | 0.8 |
0.6738 | 0.85 | 800 | 0.6029 | 0.865 | 0.79 |
Framework versions
- Transformers 4.32.1
- Pytorch 2.0.0
- Datasets 2.9.0
- Tokenizers 0.13.3
- Downloads last month
- 4
Inference API (serverless) does not yet support transformers models for this pipeline type.