Edit model card

Built with Axolotl

See axolotl config

axolotl version: 0.3.0

base_model: chargoddard/internlm2-20b-llama
model_type: LlamaForCausalLM
tokenizer_type: LlamaTokenizer
is_llama_derived_model: true

load_in_8bit: true
load_in_4bit: false
strict: false

datasets:
  - path: ARB/arb_law.json
    ds_type: json
    type: alpaca
    conversation: chatml

  - path: ARB/arb_math.json
    ds_type: json
    type: alpaca
    conversation: chatml

  - path: ARB/arb_mcat_reading.json
    ds_type: json
    type: alpaca
    conversation: chatml

  - path: ARB/arb_mcat_science.json
    ds_type: json
    type: alpaca
    conversation: chatml

  - path: ARB/arb_physics.json
    ds_type: json
    type: alpaca
    conversation: chatml


dataset_prepared_path: last_run_prepared
val_set_size: 0
output_dir: ./Weyaxi-test

sequence_len: 4096
sample_packing: true
pad_to_sequence_len: true

adapter: lora
lora_model_dir:

lora_r: 512
lora_alpha: 256
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
lora_target_modules:
  - gate_proj
  - down_proj
  - up_proj
  - q_proj
  - v_proj
  - k_proj
  - o_proj
lora_modules_to_save:
  - embed_tokens
  - lm_head

wandb_project: huggingface 
wandb_entity:
wandb_watch:
wandb_run_id:
wandb_log_model:

hub_model_id: Weyaxi/Weyaxi-test

gradient_accumulation_steps: 4 # change
micro_batch_size: 2 # change
num_epochs: 3
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002

train_on_inputs: false
group_by_length: false
bf16: true
fp16: false
tf32: false

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true

warmup_steps: 10

save_steps: 20
save_total_limit: 5

debug:
#deepspeed: deepspeed/zero3_bf16.json
weight_decay: 0.1
fsdp:
fsdp_config:
special_tokens:
  eos_token: "<|im_end|>"
tokens:
  - "<|im_start|>"

Weyaxi-test

This model is a fine-tuned version of chargoddard/internlm2-20b-llama on the None dataset.

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

The following bitsandbytes quantization config was used during training:

  • quant_method: bitsandbytes
  • load_in_8bit: True
  • load_in_4bit: False
  • llm_int8_threshold: 6.0
  • llm_int8_skip_modules: None
  • llm_int8_enable_fp32_cpu_offload: False
  • llm_int8_has_fp16_weight: False
  • bnb_4bit_quant_type: fp4
  • bnb_4bit_use_double_quant: False
  • bnb_4bit_compute_dtype: float32

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • num_epochs: 3

Training results

Framework versions

  • PEFT 0.7.0
  • Transformers 4.37.0.dev0
  • Pytorch 2.0.1+cu118
  • Datasets 2.16.1
  • Tokenizers 0.15.0
Downloads last month
10
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Weyaxi/Stellaris-internlm2-20b-r512

Finetuned
(1)
this model