File size: 7,063 Bytes
d68a5c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import nn, optim
from torch.optim.lr_scheduler import ReduceLROnPlateau, CosineAnnealingLR
from transformers import Trainer, TrainingArguments, PreTrainedModel, PretrainedConfig
from datasets import load_dataset, load_metric
from transformers import BertTokenizerFast
from torchvision.transforms import Compose, Resize, ToTensor
import os
import matplotlib.pyplot as plt
import seaborn as sns
import logging

# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Custom ZeusModel
class ZeusModel(PreTrainedModel):
    config_class = PretrainedConfig

    def __init__(self, config):
        super().__init__(config)
        self.hybrid_embedding = HybridEmbeddingLayer(config.vocab_size, config.embed_dim, config.image_dim, config.audio_dim)
        self.quantum_attention = QuantumAttentionLayer(config.embed_dim)
        self.dnp_layer = DNP(config.embed_dim, config.embed_dim)
        self.recursive_reflection = RecursiveSelfReflectionLayer(config.embed_dim, config.reflection_dim)
        self.mohe_layer = MoHELayer(config.embed_dim, config.num_experts)
        self.output_layer = nn.Linear(config.embed_dim, config.vocab_size)
        self._init_weights()

    def forward(self, text_input, image_input=None, audio_input=None):
        x = self.hybrid_embedding(text_input, image_input, audio_input)
        attention_output = self.quantum_attention(x)
        x = self.dnp_layer(attention_output)
        x = self.recursive_reflection(x)
        x = self.mohe_layer(x)
        output = self.output_layer(x)
        return output, attention_output
    
    def _init_weights(self, module=None):
        if module is None:
            module = self
        if isinstance(module, nn.Linear) or isinstance(module, nn.Embedding):
            nn.init.normal_(module.weight, mean=0.0, std=self.config.initializer_range)
        if isinstance(module, nn.Linear) and module.bias is not None:
            nn.init.zeros_(module.bias)
        if isinstance(module, nn.LayerNorm):
            nn.init.ones_(module.weight)
            nn.init.zeros_(module.bias)
        for submodule in module.children():
            self._init_weights(submodule)

# Configuration class for ZeusModel
class ZeusConfig(PretrainedConfig):
    def __init__(self, vocab_size=50000, embed_dim=768, image_dim=256, audio_dim=128, reflection_dim=512, num_experts=4, initializer_range=0.02, **kwargs):
        super().__init__(**kwargs)
        self.vocab_size = vocab_size
        self.embed_dim = embed_dim
        self.image_dim = image_dim
        self.audio_dim = audio_dim
        self.reflection_dim = reflection_dim
        self.num_experts = num_experts
        self.initializer_range = initializer_range

# Hybrid Embedding Layer
class HybridEmbeddingLayer(nn.Module):
    def __init__(self, vocab_size, embed_dim, image_dim, audio_dim):
        super(HybridEmbeddingLayer, self).__init__()
        self.text_embedding = nn.Embedding(vocab_size, embed_dim)
        self.image_feature_extractor = nn.Conv2d(3, image_dim, kernel_size=3, stride=2)
        self.audio_feature_extractor = nn.Conv1d(1, audio_dim, kernel_size=3, stride=2)

    def forward(self, text_input, image_input=None, audio_input=None):
        text_emb = self.text_embedding(text_input)
        if image_input is not None:
            image_emb = self.image_feature_extractor(image_input)
            image_emb = image_emb.view(image_emb.size(0), -1)  # Flatten
        if audio_input is not None:
            audio_emb = self.audio_feature_extractor(audio_input)
            audio_emb = audio_emb.view(audio_emb.size(0), -1)  # Flatten
        combined_emb = text_emb + image_emb + audio_emb  # Hybrid combination
        return combined_emb

# Quantum-Inspired Attention Layer
class QuantumAttentionLayer(nn.Module):
    def __init__(self, embed_dim):
        super(QuantumAttentionLayer, self).__init__()
        self.attention_weights = nn.Parameter(torch.randn(embed_dim, embed_dim))

    def forward(self, x):
        # Quantum-inspired probabilistic attention
        attention_probs = F.softmax(torch.matmul(x, self.attention_weights), dim=-1)
        attention_output = torch.matmul(attention_probs, x)
        return attention_output

# Differentiable Neural Plasticity Layer
class DNP(nn.Module):
    def __init__(self, input_dim, output_dim):
        super(DNP, self).__init__()
        self.fc = nn.Linear(input_dim, output_dim)
        self.plasticity_weights = nn.Parameter(torch.randn(output_dim))

    def forward(self, x):
        out = self.fc(x)
        plasticity_effect = torch.mul(out, self.plasticity_weights)
        return out + plasticity_effect

# Custom Recursive Self-Reflection Layer
class RecursiveSelfReflectionLayer(nn.Module):
    def __init__(self, input_dim, reflection_dim):
        super(RecursiveSelfReflectionLayer, self).__init__()
        self.reflection_layer = nn.Linear(input_dim, reflection_dim)

    def forward(self, x):
        reflection_output = F.relu(self.reflection_layer(x))
        self_adjusted_output = x + reflection_output  # Recursive adjustment
        return self_adjusted_output

# MoHE Layer
class MoHELayer(nn.Module):
    def __init__(self, embed_dim, num_experts):
        super(MoHELayer, self).__init__()
        self.experts = nn.ModuleList([nn.Linear(embed_dim, embed_dim) for _ in range(num_experts)])
        self.gate = nn.Linear(embed_dim, num_experts)

    def forward(self, x):
        gate_output = F.softmax(self.gate(x), dim=-1)
        expert_outputs = torch.stack([expert(x) for expert in self.experts], dim=1)
        output = torch.einsum("be,bec->bc", gate_output, expert_outputs)
        return output

# Complete Unique Model
class ZeusModel(nn.Module):
    def __init__(self, vocab_size, embed_dim, image_dim, audio_dim, num_heads, reflection_dim, num_experts):
        super(ZeusModel, self).__init__()
        self.hybrid_embedding = HybridEmbeddingLayer(vocab_size, embed_dim, image_dim, audio_dim)
        self.quantum_attention = QuantumAttentionLayer(embed_dim)
        self.dnp_layer = DNP(embed_dim, embed_dim)
        self.recursive_reflection = RecursiveSelfReflectionLayer(embed_dim, reflection_dim)
        self.mohe_layer = MoHELayer(embed_dim, num_experts)
        self.output_layer = nn.Linear(embed_dim, vocab_size)

    def forward_with_memory(self, text_input, image_input, audio_input, symbolic_input):
        x = self.hybrid_embedding(text_input, image_input, audio_input)
        x, memory_state = self.memory_augmented_layer(x, memory_state)
        x = self.quantum_attention(x)
        x = self.dnp_layer(x)
        x = self.recursive_reflection(x)
        x = self.mohe_layer(x)
        output = self.output_layer(x)
        return output

# Parameters
vocab_size = 50000
embed_dim = 768
image_dim = 256
audio_dim = 128
num_heads = 12
reflection_dim = 512
num_experts = 4

model = ZeusModel(vocab_size, embed_dim, image_dim, audio_dim, num_heads, reflection_dim, num_experts)