File size: 7,063 Bytes
d68a5c3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 |
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import nn, optim
from torch.optim.lr_scheduler import ReduceLROnPlateau, CosineAnnealingLR
from transformers import Trainer, TrainingArguments, PreTrainedModel, PretrainedConfig
from datasets import load_dataset, load_metric
from transformers import BertTokenizerFast
from torchvision.transforms import Compose, Resize, ToTensor
import os
import matplotlib.pyplot as plt
import seaborn as sns
import logging
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Custom ZeusModel
class ZeusModel(PreTrainedModel):
config_class = PretrainedConfig
def __init__(self, config):
super().__init__(config)
self.hybrid_embedding = HybridEmbeddingLayer(config.vocab_size, config.embed_dim, config.image_dim, config.audio_dim)
self.quantum_attention = QuantumAttentionLayer(config.embed_dim)
self.dnp_layer = DNP(config.embed_dim, config.embed_dim)
self.recursive_reflection = RecursiveSelfReflectionLayer(config.embed_dim, config.reflection_dim)
self.mohe_layer = MoHELayer(config.embed_dim, config.num_experts)
self.output_layer = nn.Linear(config.embed_dim, config.vocab_size)
self._init_weights()
def forward(self, text_input, image_input=None, audio_input=None):
x = self.hybrid_embedding(text_input, image_input, audio_input)
attention_output = self.quantum_attention(x)
x = self.dnp_layer(attention_output)
x = self.recursive_reflection(x)
x = self.mohe_layer(x)
output = self.output_layer(x)
return output, attention_output
def _init_weights(self, module=None):
if module is None:
module = self
if isinstance(module, nn.Linear) or isinstance(module, nn.Embedding):
nn.init.normal_(module.weight, mean=0.0, std=self.config.initializer_range)
if isinstance(module, nn.Linear) and module.bias is not None:
nn.init.zeros_(module.bias)
if isinstance(module, nn.LayerNorm):
nn.init.ones_(module.weight)
nn.init.zeros_(module.bias)
for submodule in module.children():
self._init_weights(submodule)
# Configuration class for ZeusModel
class ZeusConfig(PretrainedConfig):
def __init__(self, vocab_size=50000, embed_dim=768, image_dim=256, audio_dim=128, reflection_dim=512, num_experts=4, initializer_range=0.02, **kwargs):
super().__init__(**kwargs)
self.vocab_size = vocab_size
self.embed_dim = embed_dim
self.image_dim = image_dim
self.audio_dim = audio_dim
self.reflection_dim = reflection_dim
self.num_experts = num_experts
self.initializer_range = initializer_range
# Hybrid Embedding Layer
class HybridEmbeddingLayer(nn.Module):
def __init__(self, vocab_size, embed_dim, image_dim, audio_dim):
super(HybridEmbeddingLayer, self).__init__()
self.text_embedding = nn.Embedding(vocab_size, embed_dim)
self.image_feature_extractor = nn.Conv2d(3, image_dim, kernel_size=3, stride=2)
self.audio_feature_extractor = nn.Conv1d(1, audio_dim, kernel_size=3, stride=2)
def forward(self, text_input, image_input=None, audio_input=None):
text_emb = self.text_embedding(text_input)
if image_input is not None:
image_emb = self.image_feature_extractor(image_input)
image_emb = image_emb.view(image_emb.size(0), -1) # Flatten
if audio_input is not None:
audio_emb = self.audio_feature_extractor(audio_input)
audio_emb = audio_emb.view(audio_emb.size(0), -1) # Flatten
combined_emb = text_emb + image_emb + audio_emb # Hybrid combination
return combined_emb
# Quantum-Inspired Attention Layer
class QuantumAttentionLayer(nn.Module):
def __init__(self, embed_dim):
super(QuantumAttentionLayer, self).__init__()
self.attention_weights = nn.Parameter(torch.randn(embed_dim, embed_dim))
def forward(self, x):
# Quantum-inspired probabilistic attention
attention_probs = F.softmax(torch.matmul(x, self.attention_weights), dim=-1)
attention_output = torch.matmul(attention_probs, x)
return attention_output
# Differentiable Neural Plasticity Layer
class DNP(nn.Module):
def __init__(self, input_dim, output_dim):
super(DNP, self).__init__()
self.fc = nn.Linear(input_dim, output_dim)
self.plasticity_weights = nn.Parameter(torch.randn(output_dim))
def forward(self, x):
out = self.fc(x)
plasticity_effect = torch.mul(out, self.plasticity_weights)
return out + plasticity_effect
# Custom Recursive Self-Reflection Layer
class RecursiveSelfReflectionLayer(nn.Module):
def __init__(self, input_dim, reflection_dim):
super(RecursiveSelfReflectionLayer, self).__init__()
self.reflection_layer = nn.Linear(input_dim, reflection_dim)
def forward(self, x):
reflection_output = F.relu(self.reflection_layer(x))
self_adjusted_output = x + reflection_output # Recursive adjustment
return self_adjusted_output
# MoHE Layer
class MoHELayer(nn.Module):
def __init__(self, embed_dim, num_experts):
super(MoHELayer, self).__init__()
self.experts = nn.ModuleList([nn.Linear(embed_dim, embed_dim) for _ in range(num_experts)])
self.gate = nn.Linear(embed_dim, num_experts)
def forward(self, x):
gate_output = F.softmax(self.gate(x), dim=-1)
expert_outputs = torch.stack([expert(x) for expert in self.experts], dim=1)
output = torch.einsum("be,bec->bc", gate_output, expert_outputs)
return output
# Complete Unique Model
class ZeusModel(nn.Module):
def __init__(self, vocab_size, embed_dim, image_dim, audio_dim, num_heads, reflection_dim, num_experts):
super(ZeusModel, self).__init__()
self.hybrid_embedding = HybridEmbeddingLayer(vocab_size, embed_dim, image_dim, audio_dim)
self.quantum_attention = QuantumAttentionLayer(embed_dim)
self.dnp_layer = DNP(embed_dim, embed_dim)
self.recursive_reflection = RecursiveSelfReflectionLayer(embed_dim, reflection_dim)
self.mohe_layer = MoHELayer(embed_dim, num_experts)
self.output_layer = nn.Linear(embed_dim, vocab_size)
def forward_with_memory(self, text_input, image_input, audio_input, symbolic_input):
x = self.hybrid_embedding(text_input, image_input, audio_input)
x, memory_state = self.memory_augmented_layer(x, memory_state)
x = self.quantum_attention(x)
x = self.dnp_layer(x)
x = self.recursive_reflection(x)
x = self.mohe_layer(x)
output = self.output_layer(x)
return output
# Parameters
vocab_size = 50000
embed_dim = 768
image_dim = 256
audio_dim = 128
num_heads = 12
reflection_dim = 512
num_experts = 4
model = ZeusModel(vocab_size, embed_dim, image_dim, audio_dim, num_heads, reflection_dim, num_experts)
|