|
--- |
|
base_model: distilbert-base-uncased-finetuned-sst-2-english |
|
library_name: transformers.js |
|
--- |
|
|
|
https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english with ONNX weights to be compatible with Transformers.js. |
|
|
|
|
|
## Usage (Transformers.js) |
|
|
|
If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@xenova/transformers) using: |
|
```bash |
|
npm i @xenova/transformers |
|
``` |
|
|
|
You can then use the model to classify text like this: |
|
|
|
```js |
|
import { pipeline } from "@xenova/transformers"; |
|
|
|
// Create a sentiment analysis pipeline |
|
const classifier = await pipeline('sentiment-analysis', 'Xenova/distilbert-base-uncased-finetuned-sst-2-english'); |
|
|
|
// Classify input text |
|
const output = await classifier('I love transformers!'); |
|
console.log(output); |
|
// [{ label: 'POSITIVE', score: 0.999788761138916 }] |
|
|
|
// Classify input text (and return all classes) |
|
const output2 = await classifier('I love transformers!', { topk: null }); |
|
console.log(output2); |
|
// [ |
|
// { label: 'POSITIVE', score: 0.999788761138916 }, |
|
// { label: 'NEGATIVE', score: 0.00021126774663571268 } |
|
// ] |
|
``` |
|
|
|
--- |
|
|
|
Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [🤗 Optimum](https://huggingface.co/docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`). |