|
--- |
|
base_model: nvidia/segformer-b1-finetuned-ade-512-512 |
|
library_name: transformers.js |
|
pipeline_tag: image-segmentation |
|
--- |
|
|
|
https://huggingface.co/nvidia/segformer-b1-finetuned-ade-512-512 with ONNX weights to be compatible with Transformers.js. |
|
|
|
## Usage (Transformers.js) |
|
|
|
If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@xenova/transformers) using: |
|
```bash |
|
npm i @xenova/transformers |
|
``` |
|
|
|
**Example:** Image segmentation with `Xenova/segformer-b1-finetuned-ade-512-512`. |
|
|
|
```js |
|
import { pipeline } from '@xenova/transformers'; |
|
|
|
// Create an image segmentation pipeline |
|
const segmenter = await pipeline('image-segmentation', 'Xenova/segformer-b1-finetuned-ade-512-512'); |
|
|
|
// Segment an image |
|
const url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/house.jpg'; |
|
const output = await segmenter(url); |
|
console.log(output) |
|
// [ |
|
// { |
|
// score: null, |
|
// label: 'wall', |
|
// mask: RawImage { ... } |
|
// }, |
|
// { |
|
// score: null, |
|
// label: 'building', |
|
// mask: RawImage { ... } |
|
// }, |
|
// ... |
|
// ] |
|
``` |
|
|
|
You can visualize the outputs with: |
|
```js |
|
for (const l of output) { |
|
l.mask.save(`${l.label}.png`); |
|
} |
|
``` |
|
|
|
--- |
|
|
|
Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [🤗 Optimum](https://huggingface.co/docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`). |