Model Card for Model ID
This model is optimized for plant science by continuing pertaining on over 1.5 million plant science academic articles based on LLaMa-2-13b-base. And it undergoes further instruction tuning to make it follow instructions.
Developed by: [UCSB]
Language(s) (NLP): [More Information Needed]
License: [More Information Needed]
Finetuned from model [optional]: [LLaMa-2]
Paper [optional]: [https://arxiv.org/pdf/2401.01600.pdf]
Demo [optional]: [More Information Needed]
How to Get Started with the Model
from transformers import LlamaTokenizer, LlamaForCausalLM
import torch
tokenizer = LlamaTokenizer.from_pretrained("Xianjun/PLLaMa-13b-instruct")
model = LlamaForCausalLM.from_pretrained("Xianjun/PLLaMa-13b-instruct").half().to("cuda")
instruction = "How to ..."
batch = tokenizer(instruction, return_tensors="pt", add_special_tokens=False).to("cuda")
with torch.no_grad():
output = model.generate(**batch, max_new_tokens=512, temperature=0.7, do_sample=True)
response = tokenizer.decode(output[0], skip_special_tokens=True)
Citation
If you find PLLaMa useful in your research, please cite the following paper:
@inproceedings{Yang2024PLLaMaAO,
title={PLLaMa: An Open-source Large Language Model for Plant Science},
author={Xianjun Yang and Junfeng Gao and Wenxin Xue and Erik Alexandersson},
year={2024},
url={https://api.semanticscholar.org/CorpusID:266741610}
}
- Downloads last month
- 49
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.