T5-Base Fine-Tuned on SQuAD for Question Generation
Model in Action:
import torch
from transformers import T5Tokenizer, T5ForConditionalGeneration
trained_model_path = 'ZhangCheng/T5-Base-Fine-Tuned-for-Question-Generation'
trained_tokenizer_path = 'ZhangCheng/T5-Base-Fine-Tuned-for-Question-Generation'
class QuestionGeneration:
def __init__(self, model_dir=None):
self.model = T5ForConditionalGeneration.from_pretrained(trained_model_path)
self.tokenizer = T5Tokenizer.from_pretrained(trained_tokenizer_path)
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
self.model = self.model.to(self.device)
self.model.eval()
def generate(self, answer: str, context: str):
input_text = '<answer> %s <context> %s ' % (answer, context)
encoding = self.tokenizer.encode_plus(
input_text,
return_tensors='pt'
)
input_ids = encoding['input_ids']
attention_mask = encoding['attention_mask']
outputs = self.model.generate(
input_ids=input_ids,
attention_mask=attention_mask
)
question = self.tokenizer.decode(
outputs[0],
skip_special_tokens=True,
clean_up_tokenization_spaces=True
)
return {'question': question, 'answer': answer, 'context': context}
if __name__ == "__main__":
context = 'ZhangCheng fine-tuned T5 on SQuAD dataset for question generation.'
answer = 'ZhangCheng'
QG = QuestionGeneration()
qa = QG.generate(answer, context)
print(qa['question'])
# Output:
# Who fine-tuned T5 on SQuAD dataset for question generation?
- Downloads last month
- 7,880
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.