Edit model card

Self-Exploring Language Models: Active Preference Elicitation for Online Alignment.

SELM-Zephyr-7B-iter-3

This model is a fine-tuned version of ZhangShenao/SELM-Zephyr-7B-iter-2 using synthetic data based on on the HuggingFaceH4/ultrafeedback_binarized dataset.

Model description

  • Model type: A 7B parameter Zephyr-based Self-Exploring Language Models (SELM).
  • License: MIT

Results

AlpacaEval 2.0 (LC WR) MT-Bench (Average)
SELM-Zephyr-7B-iter-3        24.00       7.48
SELM-Zephyr-7B-iter-2        23.40       7.72
SELM-Zephyr-7B-iter-1        20.28       7.42
DPO-Zephyr-7B        14.45       7.28

Our model also ranks highly on WildBench! πŸ”₯

Training hyperparameters

The following hyperparameters were used during training:

  • alpha: 0.001
  • beta: 0.01
  • train_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 256
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • num_epochs: 1

Framework versions

  • Transformers 4.40.2
  • Pytorch 2.1.2+cu121
  • Datasets 2.14.6
  • Tokenizers 0.19.1
Downloads last month
2
Safetensors
Model size
7.24B params
Tensor type
BF16
Β·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for ZhangShenao/SELM-Zephyr-7B-iter-3

Unable to build the model tree, the base model loops to the model itself. Learn more.

Dataset used to train ZhangShenao/SELM-Zephyr-7B-iter-3

Spaces using ZhangShenao/SELM-Zephyr-7B-iter-3 2

Collection including ZhangShenao/SELM-Zephyr-7B-iter-3