aXhyra's picture
update model card README.md
e82dbf9
|
raw
history blame
1.79 kB
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- tweet_eval
metrics:
- f1
model-index:
- name: presentation_irony_1234567
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: tweet_eval
type: tweet_eval
args: irony
metrics:
- name: F1
type: f1
value: 0.674604535422547
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# presentation_irony_1234567
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9493
- F1: 0.6746
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5.1637764704815665e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 1234567
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.5514 | 1.0 | 90 | 0.5917 | 0.6767 |
| 0.6107 | 2.0 | 180 | 0.6123 | 0.6730 |
| 0.1327 | 3.0 | 270 | 0.7463 | 0.6970 |
| 0.1068 | 4.0 | 360 | 0.9493 | 0.6746 |
### Framework versions
- Transformers 4.12.5
- Pytorch 1.9.1
- Datasets 1.16.1
- Tokenizers 0.10.3