|
--- |
|
language: |
|
- de |
|
tags: |
|
- deepset/gbert-large |
|
--- |
|
**German Sentiment Analysis** |
|
|
|
This model predicts sentiment for German text. |
|
|
|
To use this model, first set it up: |
|
|
|
```python |
|
# if necessary: |
|
# pip install transformers |
|
from transformers import pipeline |
|
|
|
sentiment_model = pipeline(model=aari1995/German_Sentiment) |
|
``` |
|
|
|
to use it: |
|
|
|
```python |
|
sentence = ["Ich liebe die Bahn. Pünktlich wie immer ... -.-","Meine Beschwerde wurde super abgewickelt"] |
|
result = sentiment_model(sentence) |
|
print(result) |
|
#Output: |
|
#[{'label': 'negative', 'score': 0.4935680031776428},{'label': 'positive', 'score': 0.4388483762741089}] |
|
``` |
|
|
|
Credits / Special Thanks: |
|
This model was fine-tuned by Aaron Chibb. It is trained on [twitter dataset by tygiangz](https://huggingface.co/datasets/tyqiangz/multilingual-sentiments) and based on gBERT-large by [deepset](https://huggingface.co/deepset/gbert-large). |