language:
- de
license: apache-2.0
tags:
- hermeo
- laser
datasets:
- LeoLM/OpenSchnabeltier
pipeline_tag: conversational
model-index:
- name: germeo-7b-laser
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 60.75
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=aari1995/germeo-7b-laser
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 82.81
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=aari1995/germeo-7b-laser
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 60.57
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=aari1995/germeo-7b-laser
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 53.83
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=aari1995/germeo-7b-laser
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 75.61
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=aari1995/germeo-7b-laser
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 43.37
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=aari1995/germeo-7b-laser
name: Open LLM Leaderboard
(Evaluation WIP)
Hermes + Leo + German Laser = Germeo
Germeo-7B-Laser
A German-English understanding, but German-only speaking model merged from Hermeo-7B.
Model details
Merged from: leo-mistral-hessianai-7b-chat and DPOpenHermes-7B-v2
Model type: Causal decoder-only transformer language model
Languages: German replies with English Understanding Capabilities
Laser-Data: LeoLM/OpenSchnabeltier
This is an early experiment on laser and its influence on language understanding. It generally improves the language understanding capabilities. The hypothesis is that it degrades the probability of English replies and increasing those of German replies. The models internal German capabilities are boosted.
Will keep you updated..
Acknowledgements:
I would like to thank everyone that participated in making this model and its training possible: To @malteos for hermeo To @cognitivecomputations and Fernando Fernandes Neto for their implementation of LASER To @LeoLM and Björn for the OpenSchnabeltier dataset.
Prompt format:
streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
# Convert prompt to tokens
prompt_template = """<|im_start|>system
Du bist ein hilfreicher Assistent.<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant"""
prompt = "Schreibe eine Stellenanzeige für Data Scientist bei AXA!"
final_prompt = prompt_template.format(prompt=prompt)
Limit the model to output reply-only:
To solve this, you need to implement a custom stopping criteria:
from transformers import StoppingCriteria
class GermeoStoppingCriteria(StoppingCriteria):
def __init__(self, target_sequence, prompt):
self.target_sequence = target_sequence
self.prompt=prompt
def __call__(self, input_ids, scores, **kwargs):
# Get the generated text as a string
generated_text = tokenizer.decode(input_ids[0])
generated_text = generated_text.replace(self.prompt,'')
# Check if the target sequence appears in the generated text
if self.target_sequence in generated_text:
return True # Stop generation
return False # Continue generation
def __len__(self):
return 1
def __iter__(self):
yield self
This then expects your input prompt (formatted as given into the model), and a stopping criteria, in this case the im_end token. Simply add it to the generation:
generation_output = model.generate(
tokens,
streamer=streamer,
max_new_tokens=1012,
stopping_criteria=GermeoStoppingCriteria("<|im_end|>", prompt_template.format(prompt=prompt))
)
German benchmarks
German tasks: | MMLU-DE | Hellaswag-DE | ARC-DE | Average |
---|---|---|---|---|
Models / Few-shots: | (5 shots) | (10 shots) | (24 shots) | |
7B parameters | ||||
llama-2-7b | 0.400 | 0.513 | 0.381 | 0.431 |
leo-hessianai-7b | 0.400 | 0.609 | 0.429 | 0.479 |
bloom-6b4-clp-german | 0.274 | 0.550 | 0.351 | 0.392 |
mistral-7b | 0.524 | 0.588 | 0.473 | 0.528 |
leo-mistral-hessianai-7b | 0.481 | 0.663 | 0.485 | 0.543 |
leo-mistral-hessianai-7b-chat | 0.458 | 0.617 | 0.465 | 0.513 |
DPOpenHermes-7B-v2 | 0.517 | 0.603 | 0.515 | 0.545 |
hermeo-7b | 0.511 | 0.668 | 0.528 | 0.569 |
germeo-7b-laser (this model) | ? | ? | ? | ? |
13B parameters | ||||
llama-2-13b | 0.469 | 0.581 | 0.468 | 0.506 |
leo-hessianai-13b | 0.486 | 0.658 | 0.509 | 0.551 |
70B parameters | ||||
llama-2-70b | 0.597 | 0.674 | 0.561 | 0.611 |
leo-hessianai-70b | 0.653 | 0.721 | 0.600 | 0.658 |
Even though the model does not generate English text without being explicitly asked, performance on English Benchmarks is still up:
English benchmarks
English tasks: | MMLU | Hellaswag | ARC | Average |
---|---|---|---|---|
Models / Few-shots: | (5 shots) | (10 shots) | (24 shots) | |
llama-2-7b | 0.466 | 0.786 | 0.530 | 0.594 |
leolm-hessianai-7b | 0.423 | 0.759 | 0.522 | 0.568 |
bloom-6b4-clp-german | 0.264 | 0.525 | 0.328 | 0.372 |
mistral-7b | 0.635 | 0.832 | 0.607 | 0.691 |
leolm-mistral-hessianai-7b | 0.550 | 0.777 | 0.518 | 0.615 |
hermeo-7b | 0.601 | 0.821 | 0.620 | 0.681 |
germeo-7b-laser (this model) | 0.601 | 0.828 | 0.608 | 0.679 |
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 62.82 |
AI2 Reasoning Challenge (25-Shot) | 60.75 |
HellaSwag (10-Shot) | 82.81 |
MMLU (5-Shot) | 60.57 |
TruthfulQA (0-shot) | 53.83 |
Winogrande (5-shot) | 75.61 |
GSM8k (5-shot) | 43.37 |