metadata
library_name: setfit
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
base_model: BAAI/bge-small-en-v1.5
metrics:
- accuracy
widget:
- text: sales affects ceo pay
- text: time affects entrepreneurship intention
- text: operations planning affects entrepreneurship intention
- text: entrepreneurial self-efficacy affects entrepreneurship intention
- text: empirical training affects entrepreneurship intention
pipeline_tag: text-classification
inference: true
model-index:
- name: SetFit with BAAI/bge-small-en-v1.5
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: accuracy
value: 0.9058823529411765
name: Accuracy
SetFit with BAAI/bge-small-en-v1.5
This is a SetFit model that can be used for Text Classification. This SetFit model uses BAAI/bge-small-en-v1.5 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: BAAI/bge-small-en-v1.5
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 512 tokens
- Number of Classes: 2 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
1 |
|
0 |
|
Evaluation
Metrics
Label | Accuracy |
---|---|
all | 0.9059 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("abehandlerorg/setfit")
# Run inference
preds = model("sales affects ceo pay")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 4 | 5.4307 | 12 |
Label | Training Sample Count |
---|---|
0 | 168 |
1 | 171 |
Training Hyperparameters
- batch_size: (32, 32)
- num_epochs: (4, 4)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0006 | 1 | 0.3133 | - |
0.0277 | 50 | 0.289 | - |
0.0553 | 100 | 0.2506 | - |
0.0830 | 150 | 0.2243 | - |
0.1107 | 200 | 0.2388 | - |
0.1384 | 250 | 0.2084 | - |
0.1660 | 300 | 0.1316 | - |
0.1937 | 350 | 0.0142 | - |
0.2214 | 400 | 0.0065 | - |
0.2490 | 450 | 0.0037 | - |
0.2767 | 500 | 0.003 | - |
0.3044 | 550 | 0.002 | - |
0.3320 | 600 | 0.0018 | - |
0.3597 | 650 | 0.0026 | - |
0.3874 | 700 | 0.0013 | - |
0.4151 | 750 | 0.0012 | - |
0.4427 | 800 | 0.0284 | - |
0.4704 | 850 | 0.0145 | - |
0.4981 | 900 | 0.0053 | - |
0.5257 | 950 | 0.0075 | - |
0.5534 | 1000 | 0.005 | - |
0.5811 | 1050 | 0.0008 | - |
0.6087 | 1100 | 0.0008 | - |
0.6364 | 1150 | 0.0008 | - |
0.6641 | 1200 | 0.0007 | - |
0.6918 | 1250 | 0.0008 | - |
0.7194 | 1300 | 0.0009 | - |
0.7471 | 1350 | 0.0007 | - |
0.7748 | 1400 | 0.0008 | - |
0.8024 | 1450 | 0.0006 | - |
0.8301 | 1500 | 0.0006 | - |
0.8578 | 1550 | 0.0192 | - |
0.8854 | 1600 | 0.0005 | - |
0.9131 | 1650 | 0.002 | - |
0.9408 | 1700 | 0.0204 | - |
0.9685 | 1750 | 0.0039 | - |
0.9961 | 1800 | 0.0007 | - |
1.0238 | 1850 | 0.0005 | - |
1.0515 | 1900 | 0.0004 | - |
1.0791 | 1950 | 0.0005 | - |
1.1068 | 2000 | 0.0006 | - |
1.1345 | 2050 | 0.0004 | - |
1.1621 | 2100 | 0.0006 | - |
1.1898 | 2150 | 0.0004 | - |
1.2175 | 2200 | 0.0004 | - |
1.2452 | 2250 | 0.0018 | - |
1.2728 | 2300 | 0.0041 | - |
1.3005 | 2350 | 0.0004 | - |
1.3282 | 2400 | 0.0107 | - |
1.3558 | 2450 | 0.0005 | - |
1.3835 | 2500 | 0.0004 | - |
1.4112 | 2550 | 0.0004 | - |
1.4388 | 2600 | 0.0167 | - |
1.4665 | 2650 | 0.0068 | - |
1.4942 | 2700 | 0.0004 | - |
1.5219 | 2750 | 0.0064 | - |
1.5495 | 2800 | 0.0041 | - |
1.5772 | 2850 | 0.0004 | - |
1.6049 | 2900 | 0.0003 | - |
1.6325 | 2950 | 0.0004 | - |
1.6602 | 3000 | 0.0004 | - |
1.6879 | 3050 | 0.0003 | - |
1.7156 | 3100 | 0.0057 | - |
1.7432 | 3150 | 0.0044 | - |
1.7709 | 3200 | 0.0004 | - |
1.7986 | 3250 | 0.0166 | - |
1.8262 | 3300 | 0.0004 | - |
1.8539 | 3350 | 0.0032 | - |
1.8816 | 3400 | 0.0133 | - |
1.9092 | 3450 | 0.0003 | - |
1.9369 | 3500 | 0.0003 | - |
1.9646 | 3550 | 0.0052 | - |
1.9923 | 3600 | 0.0004 | - |
2.0199 | 3650 | 0.004 | - |
2.0476 | 3700 | 0.0003 | - |
2.0753 | 3750 | 0.0054 | - |
2.1029 | 3800 | 0.0057 | - |
2.1306 | 3850 | 0.0004 | - |
2.1583 | 3900 | 0.0272 | - |
2.1859 | 3950 | 0.0003 | - |
2.2136 | 4000 | 0.006 | - |
2.2413 | 4050 | 0.0044 | - |
2.2690 | 4100 | 0.0003 | - |
2.2966 | 4150 | 0.0167 | - |
2.3243 | 4200 | 0.0048 | - |
2.3520 | 4250 | 0.0086 | - |
2.3796 | 4300 | 0.0051 | - |
2.4073 | 4350 | 0.0003 | - |
2.4350 | 4400 | 0.0037 | - |
2.4626 | 4450 | 0.0003 | - |
2.4903 | 4500 | 0.0021 | - |
2.5180 | 4550 | 0.0003 | - |
2.5457 | 4600 | 0.004 | - |
2.5733 | 4650 | 0.0025 | - |
2.6010 | 4700 | 0.0003 | - |
2.6287 | 4750 | 0.0003 | - |
2.6563 | 4800 | 0.0003 | - |
2.6840 | 4850 | 0.0031 | - |
2.7117 | 4900 | 0.0168 | - |
2.7393 | 4950 | 0.0019 | - |
2.7670 | 5000 | 0.004 | - |
2.7947 | 5050 | 0.0003 | - |
2.8224 | 5100 | 0.0003 | - |
2.8500 | 5150 | 0.003 | - |
2.8777 | 5200 | 0.0003 | - |
2.9054 | 5250 | 0.0003 | - |
2.9330 | 5300 | 0.0171 | - |
2.9607 | 5350 | 0.0003 | - |
2.9884 | 5400 | 0.0162 | - |
3.0160 | 5450 | 0.0143 | - |
3.0437 | 5500 | 0.0134 | - |
3.0714 | 5550 | 0.0133 | - |
3.0991 | 5600 | 0.0003 | - |
3.1267 | 5650 | 0.0003 | - |
3.1544 | 5700 | 0.0093 | - |
3.1821 | 5750 | 0.0003 | - |
3.2097 | 5800 | 0.0003 | - |
3.2374 | 5850 | 0.0003 | - |
3.2651 | 5900 | 0.0003 | - |
3.2928 | 5950 | 0.0003 | - |
3.3204 | 6000 | 0.0029 | - |
3.3481 | 6050 | 0.0126 | - |
3.3758 | 6100 | 0.0003 | - |
3.4034 | 6150 | 0.0002 | - |
3.4311 | 6200 | 0.0003 | - |
3.4588 | 6250 | 0.0062 | - |
3.4864 | 6300 | 0.0002 | - |
3.5141 | 6350 | 0.0002 | - |
3.5418 | 6400 | 0.0003 | - |
3.5695 | 6450 | 0.0002 | - |
3.5971 | 6500 | 0.0041 | - |
3.6248 | 6550 | 0.0465 | - |
3.6525 | 6600 | 0.0148 | - |
3.6801 | 6650 | 0.0181 | - |
3.7078 | 6700 | 0.0037 | - |
3.7355 | 6750 | 0.0002 | - |
3.7631 | 6800 | 0.0003 | - |
3.7908 | 6850 | 0.0003 | - |
3.8185 | 6900 | 0.0034 | - |
3.8462 | 6950 | 0.0002 | - |
3.8738 | 7000 | 0.0148 | - |
3.9015 | 7050 | 0.0002 | - |
3.9292 | 7100 | 0.0003 | - |
3.9568 | 7150 | 0.0002 | - |
3.9845 | 7200 | 0.0003 | - |
Framework Versions
- Python: 3.10.12
- SetFit: 1.0.3
- Sentence Transformers: 2.7.0
- Transformers: 4.40.1
- PyTorch: 2.2.1+cu121
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}