SOLAR-10.7B-Instruct-Forest-DPO
Introducing SOLAR-10.7B-Instruct-Forest-DPO, a LLM fine-tuned with base model upstage/SOLAR-10.7B-Instruct-v1.0, using direct preference optimization. This model showcases exceptional prowess across a spectrum of natural language processing (NLP) tasks.
A mixture of the following datasets was used for fine-tuning.
- Intel/orca_dpo_pairs
- nvidia/HelpSteer
- jondurbin/truthy-dpo-v0.1
π» Usage
!pip install -qU transformers bitsandbytes accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "abhishekchohan/SOLAR-10.7B-Instruct-Forest-DPO"
tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
"text-generation",
model=model,
model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True},
)
messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}]
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
- Downloads last month
- 552
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.