bert-lora
This model is a fine-tuned version of bert-base-cased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.4540
- Accuracy: 0.78
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 1.0 | 125 | 0.6659 | 0.64 |
No log | 2.0 | 250 | 0.6518 | 0.64 |
No log | 3.0 | 375 | 0.6353 | 0.66 |
0.6613 | 4.0 | 500 | 0.6126 | 0.7 |
0.6613 | 5.0 | 625 | 0.5862 | 0.7 |
0.6613 | 6.0 | 750 | 0.5677 | 0.68 |
0.6613 | 7.0 | 875 | 0.5350 | 0.72 |
0.5607 | 8.0 | 1000 | 0.5163 | 0.74 |
0.5607 | 9.0 | 1125 | 0.4980 | 0.74 |
0.5607 | 10.0 | 1250 | 0.4821 | 0.75 |
0.5607 | 11.0 | 1375 | 0.4738 | 0.77 |
0.4757 | 12.0 | 1500 | 0.4633 | 0.78 |
0.4757 | 13.0 | 1625 | 0.4574 | 0.78 |
0.4757 | 14.0 | 1750 | 0.4553 | 0.78 |
0.4757 | 15.0 | 1875 | 0.4540 | 0.78 |
Framework versions
- PEFT 0.13.0
- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 3.0.1
- Tokenizers 0.19.1
- Downloads last month
- 3
Model tree for abhishekkumaribt/bert-lora
Base model
google-bert/bert-base-cased