abhishtagatya's picture
Update README.md
1a9795f verified
metadata
base_model: microsoft/wavlm-base
tags:
  - audio-classification
  - deepfake
  - audio-spoof
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: wavlm-base-960h-itw-deepfake
    results: []

wavlm-base-960h-itw-deepfake

This model is a fine-tuned version of microsoft/wavlm-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0593
  • Accuracy: 0.9896
  • FAR: 0.0080
  • FRR: 0.0144
  • EER: 0.0112

Model description

Quick Use

  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

  config = AutoConfig.from_pretrained("abhishtagatya/wavlm-base-960h-itw-deepfake")
  feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("abhishtagatya/wavlm-base-960h-itw-deepfake")

  model = WavLMForSequenceClassification.from_pretrained("abhishtagatya/wavlm-base-960h-itw-deepfake", config=config).to(device)

  # Your Logic Here

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-06
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 4
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 2.0

Training results

Training Loss Epoch Step Validation Loss Accuracy FAR FRR EER
0.3205 0.39 2500 0.1223 0.9699 0.0343 0.0229 0.0286
0.0752 0.79 5000 0.0822 0.9843 0.0145 0.0178 0.0161
0.0666 1.18 7500 0.0825 0.9849 0.0158 0.0140 0.0149
0.0569 1.57 10000 0.0674 0.9884 0.0103 0.0140 0.0121
0.0567 1.97 12500 0.0593 0.9896 0.0080 0.0144 0.0112

Framework versions

  • Transformers 4.38.0.dev0
  • Pytorch 2.1.2+cu121
  • Datasets 2.16.2.dev0
  • Tokenizers 0.15.1