|
--- |
|
base_model: ad019el/tamasheq-99-final |
|
datasets: |
|
- ad019el/ar_data |
|
- heisenberg1337/tamasheq_data |
|
metrics: |
|
- cer |
|
- wer |
|
tags: |
|
- generated_from_trainer |
|
--- |
|
model-index: |
|
- name: tamasheq-99-final |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# tamasheq-99-final |
|
|
|
This model is a fine-tuned version of [jonatasgrosman/wav2vec2-large-xlsr-53-arabic](https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-arabic) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Cer: 16.2959 |
|
- Wer: 55.5334 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 3e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 32 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
|
|
### Training results |
|
|
|
|step |tamasheq_wer|arabic_wer|tamasheq_cer|arabic_cer| |
|
|------------|------------|----------|------------|----------| |
|
|Before train|104.985 |23.1305 |67.4458 |7.30972 | |
|
|step 300 |99.5513 |23.0544 |49.7078 |7.1043 | |
|
|step 600 |95.1147 |22.5267 |41.4515 |6.0098 | |
|
|step 900 |93.5194 |21.0404 |38.0867 |5.52939 | |
|
|step 1200 |92.5723 |20.6224 |37.0877 |5.39751 | |
|
|step 1500 |92.3009 |20.9238 |36.9915 |5.6718 | |
|
|step 1800 |92.0738 |21.2699 |36.3713 |6.08877 | |
|
|step 2100 |88.7338 |21.9693 |33.3648 |5.9156 | |
|
|step 2400 |87.1884 |21.1333 |31.8379 |5.52939 | |
|
|step 2700 |88.299 |21.0705 |31.4599 |5.5078 | |
|
|step 3000 |87.7866 |21.5021 |30.9039 |6.29239 | |
|
|step 3300 |84.2971 |21.666 |29.7455 |5.97212 | |
|
|step 3600 |83.8983 |21.5732 |28.6145 |6.04748 | |
|
|step 3900 |81.8544 |22.1087 |27.9359 |5.99096 | |
|
|step 4200 |82.9741 |23.392 |27.4288 |6.4013 | |
|
|step 4500 |83.8485 |24.2452 |27.0575 |6.79164 | |
|
|step 4800 |81.6052 |22.666 |26.6918 |6.09457 | |
|
|step 5100 |77.9661 |22.4803 |25.1084 |6.0098 | |
|
|step 5400 |77.2183 |21.83 |24.656 |5.9156 | |
|
|step 5700 |76.672 |22.1078 |24.2606 |6.0802 | |
|
|step 6000 |76.2712 |22.7589 |23.9236 |6.41485 | |
|
|step 6300 |75.7228 |23.8737 |23.7135 |6.78222 | |
|
|step 6600 |71.2363 |23.177 |22.196 |6.39601 | |
|
|step 6900 |69.8405 |22.7125 |21.574 |6.21703 | |
|
|step 7200 |72.9452 |23.6679 |21.0775 |6.6918 | |
|
|step 7500 |75.9222 |24.7097 |20.8999 |7.17784 | |
|
|step 7800 |67.4975 |23.1305 |20.6786 |6.65034 | |
|
|step 8100 |65.2542 |23.1305 |19.7361 |6.49962 | |
|
|step 8400 |61.7149 |22.3874 |18.426 |6.12283 | |
|
|step 8700 |63.8046 |23.6679 |18.2166 |6.2679 | |
|
|step 9000 |64.7059 |24.1059 |17.9952 |6.66918 | |
|
|step 9300 |67.5474 |24.7097 |17.6078 |7.16843 | |
|
|step 9600 |57.1286 |23.3163 |17.2385 |6.66918 | |
|
|step 9900 |58.2752 |22.8054 |17.1065 |6.4431 | |
|
|step 10200 |57.7767 |24.2917 |16.848 |6.68802 | |
|
|step 10500 |55.2841 |25.1277 |16.5033 |7.12133 | |
|
|step 10800 |52.5424 |23.8272 |15.9566 |6.80106 | |
|
|step 11100 |55.5334 |24.6168 |16.2959 |6.94235 | |
|
|
|
### Framework versions |
|
|
|
- Transformers 4.31.0 |
|
- Pytorch 2.0.1+cu118 |
|
- Datasets 2.14.4 |
|
- Tokenizers 0.13.3 |