simonca's picture
Update README.md
f2cfb49
|
raw
history blame
1.08 kB
metadata
tags:
  - tabular
  - classification
  - tabular-classification
  - google-ads
widget:
  structuredData:
    keyword:
      - garner
      - chevy
      - location
    class:
      - brand
      - brand
      - geo
datasets:
  - adgrowr/autotrain-data-negative-keywords-classifier
co2_eq_emissions:
  emissions: 1.2831572182351383

Model Trained Using AutoTrain

  • Problem type: Multi-class Classification
  • Model ID: 61622134846
  • CO2 Emissions (in grams): 1.2832

Validation Metrics

  • Loss: 0.883
  • Accuracy: 0.583
  • Macro F1: 0.184
  • Micro F1: 0.583
  • Weighted F1: 0.429
  • Macro Precision: 0.146
  • Micro Precision: 0.583
  • Weighted Precision: 0.340
  • Macro Recall: 0.250
  • Micro Recall: 0.583
  • Weighted Recall: 0.583

Usage

import json
import joblib
import pandas as pd

model = joblib.load('model.joblib')
config = json.load(open('config.json'))

features = config['features']

# data = pd.read_csv("data.csv")
data = data[features]
data.columns = ["feat_" + str(col) for col in data.columns]

predictions = model.predict(data)  # or model.predict_proba(data)