aditnnda/machine_translation

This model is a fine-tuned version of Helsinki-NLP/opus-mt-id-en on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 0.2082
  • Validation Loss: 1.0149
  • Epoch: 24

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5e-05, 'decay_steps': 1500, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
  • training_precision: mixed_float16

Training results

Train Loss Validation Loss Epoch
1.8561 1.6274 0
1.4184 1.4283 1
1.1634 1.2964 2
0.9729 1.2049 3
0.8390 1.1546 4
0.7333 1.1060 5
0.6449 1.0874 6
0.6032 1.0554 7
0.5251 1.0308 8
0.4711 1.0321 9
0.4255 1.0258 10
0.3880 1.0208 11
0.3622 1.0189 12
0.3337 1.0176 13
0.3107 1.0187 14
0.2922 1.0149 15
0.2718 1.0110 16
0.2594 1.0118 17
0.2460 1.0116 18
0.2334 1.0133 19
0.2279 1.0156 20
0.2210 1.0134 21
0.2130 1.0147 22
0.2085 1.0157 23
0.2082 1.0149 24

Framework versions

  • Transformers 4.35.2
  • TensorFlow 2.14.0
  • Datasets 2.15.0
  • Tokenizers 0.15.0
Downloads last month
20
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for aditnnda/machine_translation

Finetuned
(6)
this model