aditnnda/machine_translation_informal2formal

This model is a fine-tuned version of Helsinki-NLP/opus-mt-id-en on STIF Indonesia dataset. It achieves the following results on the evaluation set:

  • Train Loss: 0.0077
  • Validation Loss: 1.2870
  • Epoch: 99

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5e-05, 'decay_steps': 6000, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
  • training_precision: float32

Training results

Train Loss Validation Loss Epoch
3.4298 2.4070 0
2.1508 1.8031 1
1.6301 1.5249 2
1.3013 1.3417 3
1.0752 1.2465 4
0.9119 1.1651 5
0.7778 1.1213 6
0.6763 1.0813 7
0.5907 1.0542 8
0.5162 1.0289 9
0.4573 1.0265 10
0.4057 1.0115 11
0.3645 1.0096 12
0.3227 1.0037 13
0.2864 1.0016 14
0.2598 1.0121 15
0.2291 1.0079 16
0.2069 1.0199 17
0.1876 1.0247 18
0.1717 1.0199 19
0.1544 1.0283 20
0.1393 1.0416 21
0.1285 1.0370 22
0.1171 1.0430 23
0.1069 1.0593 24
0.0990 1.0670 25
0.0915 1.0655 26
0.0827 1.0818 27
0.0781 1.0903 28
0.0729 1.0998 29
0.0678 1.0932 30
0.0639 1.1051 31
0.0592 1.1125 32
0.0556 1.1240 33
0.0509 1.1177 34
0.0512 1.1355 35
0.0438 1.1405 36
0.0453 1.1322 37
0.0443 1.1419 38
0.0407 1.1419 39
0.0397 1.1495 40
0.0386 1.1609 41
0.0346 1.1619 42
0.0351 1.1638 43
0.0344 1.1711 44
0.0302 1.1782 45
0.0470 1.1836 46
0.0330 1.1913 47
0.0284 1.1963 48
0.0268 1.1964 49
0.0255 1.2017 50
0.0236 1.2092 51
0.0241 1.2104 52
0.0234 1.2170 53
0.0216 1.2192 54
0.0209 1.2317 55
0.0205 1.2289 56
0.0193 1.2363 57
0.0191 1.2295 58
0.0184 1.2306 59
0.0185 1.2352 60
0.0184 1.2415 61
0.0174 1.2389 62
0.0166 1.2392 63
0.0167 1.2469 64
0.0166 1.2457 65
0.0147 1.2456 66
0.0146 1.2511 67
0.0147 1.2552 68
0.0147 1.2493 69
0.0133 1.2532 70
0.0135 1.2561 71
0.0136 1.2609 72
0.0130 1.2602 73
0.0119 1.2629 74
0.0123 1.2667 75
0.0114 1.2675 76
0.0122 1.2673 77
0.0111 1.2649 78
0.0099 1.2722 79
0.0109 1.2693 80
0.0101 1.2727 81
0.0101 1.2746 82
0.0096 1.2739 83
0.0103 1.2734 84
0.0096 1.2805 85
0.0093 1.2799 86
0.0097 1.2823 87
0.0093 1.2826 88
0.0095 1.2808 89
0.0091 1.2875 90
0.0081 1.2849 91
0.0084 1.2849 92
0.0083 1.2838 93
0.0089 1.2866 94
0.0084 1.2851 95
0.0082 1.2870 96
0.0078 1.2871 97
0.0078 1.2872 98
0.0077 1.2870 99

Framework versions

  • Transformers 4.35.2
  • TensorFlow 2.14.0
  • Datasets 2.15.0
  • Tokenizers 0.15.0
Downloads last month
22
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for aditnnda/machine_translation_informal2formal

Finetuned
(6)
this model