Edit model card

test

This model is a fine-tuned version of microsoft/layoutlmv3-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4675
  • Precision: 0.8
  • Recall: 0.8649
  • F1: 0.8312
  • Accuracy: 0.8318

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 500

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 3.85 50 1.1808 0.7013 0.7297 0.7152 0.7196
No log 7.69 100 0.7117 0.7317 0.8108 0.7692 0.8037
No log 11.54 150 0.5580 0.7778 0.8514 0.8129 0.8224
No log 15.38 200 0.5009 0.8228 0.8784 0.8497 0.8411
No log 19.23 250 0.4659 0.8228 0.8784 0.8497 0.8505
No log 23.08 300 0.4734 0.7901 0.8649 0.8258 0.8318
No log 26.92 350 0.4496 0.8205 0.8649 0.8421 0.8318
No log 30.77 400 0.4619 0.8 0.8649 0.8312 0.8318
No log 34.62 450 0.4560 0.8125 0.8784 0.8442 0.8411
0.3885 38.46 500 0.4675 0.8 0.8649 0.8312 0.8318

Framework versions

  • Transformers 4.39.0.dev0
  • Pytorch 2.1.0+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
21
Safetensors
Model size
130M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for adityaprakhar/test

Finetuned
(210)
this model