|
--- |
|
base_model: appvoid/palmer-002 |
|
datasets: |
|
- appvoid/no-prompt-15k |
|
inference: false |
|
language: |
|
- en |
|
license: apache-2.0 |
|
model_creator: appvoid |
|
model_name: palmer-002 |
|
pipeline_tag: text-generation |
|
quantized_by: afrideva |
|
tags: |
|
- gguf |
|
- ggml |
|
- quantized |
|
- q2_k |
|
- q3_k_m |
|
- q4_k_m |
|
- q5_k_m |
|
- q6_k |
|
- q8_0 |
|
--- |
|
# appvoid/palmer-002-GGUF |
|
|
|
Quantized GGUF model files for [palmer-002](https://huggingface.co/appvoid/palmer-002) from [appvoid](https://huggingface.co/appvoid) |
|
|
|
|
|
| Name | Quant method | Size | |
|
| ---- | ---- | ---- | |
|
| [palmer-002.fp16.gguf](https://huggingface.co/afrideva/palmer-002-GGUF/resolve/main/palmer-002.fp16.gguf) | fp16 | 2.20 GB | |
|
| [palmer-002.q2_k.gguf](https://huggingface.co/afrideva/palmer-002-GGUF/resolve/main/palmer-002.q2_k.gguf) | q2_k | 483.12 MB | |
|
| [palmer-002.q3_k_m.gguf](https://huggingface.co/afrideva/palmer-002-GGUF/resolve/main/palmer-002.q3_k_m.gguf) | q3_k_m | 550.82 MB | |
|
| [palmer-002.q4_k_m.gguf](https://huggingface.co/afrideva/palmer-002-GGUF/resolve/main/palmer-002.q4_k_m.gguf) | q4_k_m | 668.79 MB | |
|
| [palmer-002.q5_k_m.gguf](https://huggingface.co/afrideva/palmer-002-GGUF/resolve/main/palmer-002.q5_k_m.gguf) | q5_k_m | 783.02 MB | |
|
| [palmer-002.q6_k.gguf](https://huggingface.co/afrideva/palmer-002-GGUF/resolve/main/palmer-002.q6_k.gguf) | q6_k | 904.39 MB | |
|
| [palmer-002.q8_0.gguf](https://huggingface.co/afrideva/palmer-002-GGUF/resolve/main/palmer-002.q8_0.gguf) | q8_0 | 1.17 GB | |
|
|
|
|
|
|
|
## Original Model Card: |
|
![palmer](https://huggingface.co/appvoid/palmer-001/resolve/main/palmer.jpeg) |
|
# palmer |
|
### a better base model |
|
palmer is a series of ~1b parameters language models fine-tuned to be used as base models instead of using custom prompts for tasks. This means that it can be further fine-tuned on more data with custom prompts as usual or be used for downstream tasks as any base model you can get. The model has the best of both worlds: some "bias" to act as an assistant, but also the abillity to predict the next-word from its internet knowledge base. It's a 1.1b llama 2 model so you can use it with your favorite tools/frameworks. |
|
|
|
### evaluation |
|
|Model| ARC_C| HellaSwag| PIQA| Winogrande| |
|
|------|-----|-----------|------|-------------| |
|
|tinyllama-2t| 0.2807| 0.5463| 0.7067| 0.5683| |
|
|palmer-001| 0.2807| 0.5524| 0.7106| **0.5896**| |
|
|tinyllama-2.5t|0.3191|0.5896| 0.7307| 0.5872| |
|
|palmer-002|**0.3242**|**0.5956**|**0.7345**|0.5888| |
|
|
|
|
|
### training |
|
Training took ~3.5 P100 gpu hours. It was trained on 15,000 gpt-4 shuffled samples. palmer was fine-tuned using lower learning rates ensuring it keeps as much general knowledge as possible. |
|
|
|
|
|
### prompt |
|
``` |
|
no prompt |
|
``` |
|
<a href="https://ko-fi.com/appvoid" target="_blank"><img src="https://cdn.buymeacoffee.com/buttons/v2/default-yellow.png" alt="Buy Me A Coffee" style="height: 48px !important;width: 180px !important; filter: invert(70%);" ></a> |