Edit model card

bertopic-test_1010

This is a BERTopic model. BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets.

Usage

To use this model, please install BERTopic:

pip install -U bertopic

You can use the model as follows:

from bertopic import BERTopic
topic_model = BERTopic.load("ahessamb/bertopic-test_1010")

topic_model.get_topic_info()

Topic overview

  • Number of topics: 10
  • Number of training documents: 1570
Click here for an overview of all topics.
Topic ID Topic Keywords Topic Frequency Label
0 ethereum - listings - market - eth - binance 173 0_ethereum_listings_market_eth
1 xrp - ripple - crypto - mekras - sbi 93 1_xrp_ripple_crypto_mekras
2 peaq - blockchain - nft - opensea - ordibots 226 2_peaq_blockchain_nft_opensea
3 crypto - regulatory - securities - coinbase - lawsuit 204 3_crypto_regulatory_securities_coinbase
4 binance - exchange - securities - sec - letter 116 4_binance_exchange_securities_sec
5 mutant - mayc - bayc - club - mcmullen 95 5_mutant_mayc_bayc_club
6 tether - yuan - games - bitcoin - cbdcs 211 6_tether_yuan_games_bitcoin
7 crypto - bills - exponential - markets - liquidity 140 7_crypto_bills_exponential_markets
8 ada - cardano - litecoin - resistance - market 214 8_ada_cardano_litecoin_resistance
9 shib - doge - shiba - sentiment - market 98 9_shib_doge_shiba_sentiment

Training hyperparameters

  • calculate_probabilities: False
  • language: None
  • low_memory: False
  • min_topic_size: 10
  • n_gram_range: (1, 1)
  • nr_topics: None
  • seed_topic_list: None
  • top_n_words: 10
  • verbose: False

Framework versions

  • Numpy: 1.22.4
  • HDBSCAN: 0.8.29
  • UMAP: 0.5.3
  • Pandas: 1.5.3
  • Scikit-Learn: 1.2.2
  • Sentence-transformers: 2.2.2
  • Transformers: 4.30.2
  • Numba: 0.56.4
  • Plotly: 5.13.1
  • Python: 3.10.12
Downloads last month
3
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.