ahmedALM1221's picture
update model card README.md
9e24794
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: convnextv2-tiny-1k-224-finetuned-eurosat-50
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: Skin_Dataset
          split: train
          args: Skin_Dataset
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.7762711864406779

convnextv2-tiny-1k-224-finetuned-eurosat-50

This model is a fine-tuned version of facebook/convnextv2-tiny-1k-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2472
  • Accuracy: 0.7763

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.9434 0.97 18 1.8549 0.2847
1.7722 2.0 37 1.6757 0.3661
1.5502 2.97 55 1.4652 0.4339
1.2595 4.0 74 1.1916 0.6068
0.9304 4.97 92 1.0282 0.6576
0.7333 6.0 111 0.8574 0.7051
0.6015 6.97 129 0.8427 0.6983
0.4617 8.0 148 0.7682 0.7458
0.3162 8.97 166 0.7453 0.7559
0.2249 10.0 185 0.7475 0.7661
0.1667 10.97 203 0.7677 0.7492
0.091 12.0 222 1.0114 0.7220
0.0783 12.97 240 1.0206 0.7186
0.0613 14.0 259 0.8466 0.7492
0.0703 14.97 277 1.1067 0.7119
0.0335 16.0 296 1.0117 0.7390
0.0171 16.97 314 0.9367 0.7525
0.0253 18.0 333 1.3196 0.7153
0.0201 18.97 351 1.0530 0.7525
0.0041 20.0 370 1.0523 0.7729
0.0154 20.97 388 1.1311 0.7661
0.0025 22.0 407 1.1477 0.7729
0.0036 22.97 425 1.1309 0.7627
0.002 24.0 444 1.1399 0.7729
0.0014 24.97 462 1.1543 0.7797
0.0011 26.0 481 1.1799 0.7763
0.0011 26.97 499 1.1579 0.7661
0.0009 28.0 518 1.1907 0.7627
0.0009 28.97 536 1.1878 0.7661
0.0008 30.0 555 1.1986 0.7661
0.0008 30.97 573 1.2051 0.7661
0.0007 32.0 592 1.2073 0.7661
0.0007 32.97 610 1.2156 0.7661
0.0007 34.0 629 1.2218 0.7627
0.0007 34.97 647 1.2173 0.7661
0.0006 36.0 666 1.2217 0.7729
0.0006 36.97 684 1.2272 0.7695
0.0006 38.0 703 1.2261 0.7763
0.0006 38.97 721 1.2305 0.7763
0.0006 40.0 740 1.2325 0.7763
0.0005 40.97 758 1.2362 0.7763
0.0005 42.0 777 1.2409 0.7763
0.0005 42.97 795 1.2422 0.7763
0.0005 44.0 814 1.2429 0.7729
0.0005 44.97 832 1.2434 0.7763
0.0005 46.0 851 1.2458 0.7763
0.0005 46.97 869 1.2468 0.7763
0.0005 48.0 888 1.2471 0.7763
0.0005 48.65 900 1.2472 0.7763

Framework versions

  • Transformers 4.30.2
  • Pytorch 2.0.1+cu118
  • Datasets 2.13.1
  • Tokenizers 0.13.3