Edit model card

BERT large model (uncased) for Sentence Embeddings in Russian language.

The model is described in this article
For better quality, use mean token embeddings.

Usage (HuggingFace Models Repository)

You can use the model directly from the model repository to compute sentence embeddings:

from transformers import AutoTokenizer, AutoModel
import torch


#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
    token_embeddings = model_output[0] #First element of model_output contains all token embeddings
    input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
    sum_embeddings = torch.sum(token_embeddings * input_mask_expanded, 1)
    sum_mask = torch.clamp(input_mask_expanded.sum(1), min=1e-9)
    return sum_embeddings / sum_mask



#Sentences we want sentence embeddings for
sentences = ['Привет! Как твои дела?',
             'А правда, что 42 твое любимое число?']

#Load AutoModel from huggingface model repository
tokenizer = AutoTokenizer.from_pretrained("ai-forever/sbert_large_nlu_ru")
model = AutoModel.from_pretrained("ai-forever/sbert_large_nlu_ru")

#Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, max_length=24, return_tensors='pt')

#Compute token embeddings
with torch.no_grad():
    model_output = model(**encoded_input)

#Perform pooling. In this case, mean pooling
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])

Authors

Downloads last month
1,028,638
Safetensors
Model size
427M params
Tensor type
F32
·
Inference API

Model tree for ai-forever/sbert_large_nlu_ru

Finetunes
4 models

Space using ai-forever/sbert_large_nlu_ru 1

Collection including ai-forever/sbert_large_nlu_ru