vltnmmdv's picture
Update README.md
011c7d2 verified
|
raw
history blame
6.97 kB
---
license: mit
base_model:
- ai-sage/GigaChat-20B-A3B-base
language:
- ru
- en
---
# GigaChat-20B-A3B-instruct
Диалоговая модель из семейства моделей GigaChat, основная на [GigaChat-20B-A3B-base](https://huggingface.co/ai-sage/GigaChat-20B-A3B-base). Поддерживает контекст в 131 тысячу токенов.
Больше подробностей в [хабр статье](https://habr.com/en/companies/sberdevices/articles/865996/).
**Для данной модели также доступны веса в [bf16](https://huggingface.co/ai-sage/GigaChat-20B-A3B-instruct-bf16) и [int8](https://huggingface.co/ai-sage/GigaChat-20B-A3B-instruct-int8)**
## Бенчмарки
| | T-lite-instruct-0.1<br>(llama 3.1 8B based) | gemma-2-9b-it | GigaChat-20B-A3B-instruct |
|----------------|---------------------|---------------|---------------------------|
| MERA | 0.335 | 0.392 | 0.513 |
| ru-MMLU 5-shot | 0.555 | 0.625 | 0.598 |
| Shlepa | 0.36 | 0.388 | 0.482 |
### Семейство GigaChat
| | GigaChat-20B-A3B-instruct | GigaChat-Pro v26.20 | GigaChat-Max v26.20 |
|--------------------------------|---------------------------|---------------------|---------------------|
| **Математические задачи** |
| GSM8K 5-shot | 0,763 | 0,782 | 0,929 |
| MATH 4-shot | 0,426 | 0,446 | 0,53 |
| **Написание кода** | | | |
| HumanEval 0-shot | 0,329 | 0,439 | 0,64 |
| MBPP 0-shot | 0,385 | 0,487 | 0,667 |
| **Общие знания** |
| MMLU EN 5-shot | 0,648 | 0,687 | 0,804 |
| MMLU RU 5-shot<br>Переведенные данные из MMLU EN 5-shot | 0,598 | 0,645 | 0,75 |
| MMLU RU 1-shot | — | 0,617 | 0,718 |
| MMLU PRO EN 5-shot | 0,348 | 0,431 | 0,589 |
| RUBQ 0-shot | 0,675 | 0,724 | 0,73 |
| WINOGRANDE 4-shot | 0,75 | 0,796 | 0,832 |
| CyberMetric 0-shot | 0,798 | 0,827 | 0,864 |
| **Следование инструкциям** |
| IFEval 0-shot | 0,411 | 0,566 | 0,721 |
<details>
<summary>Особенности замеров</summary>
GSM8k — это тест, который проверяет, как хорошо модели могут решать задачи с числами. В нашем исследовании мы использовали 5 шотов, чтобы оценить модель, и смотрели на последнее число в ответе. В оригинальное тесте ответ ищется по шаблону: ‘### число’.
Тест Math тоже имеет разные версии, которые проверяют математические способности моделей. В нашем исследовании мы давали 4 примера и смотрели на последнее выражение в формате '\boxed{expression}'. Затем оценивали результаты на совпадение с помощью библиотеки sympy.
</details>
## Requirements
* ```transformers>=4.47```
## Пример использования через transformers
```python
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig
model_name = "ai-sage/GigaChat-20B-A3B-instruct"
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True, torch_dtype=torch.bfloat16, device_map="auto")
model.generation_config = GenerationConfig.from_pretrained(model_name)
messages = [
{"role": "user", "content": "Докажи теорему о неподвижной точке"}
]
input_tensor = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt")
outputs = model.generate(input_tensor.to(model.device))
result = tokenizer.decode(outputs[0][input_tensor.shape[1]:], skip_special_tokens=False)
print(result)
```
## Пример использования через vLLM
```python
from transformers import AutoTokenizer
from vllm import LLM, SamplingParams
model_name = "ai-sage/GigaChat-20B-A3B-instruct"
tokenizer = AutoTokenizer.from_pretrained(model_name)
llm = LLM(model=model_name, trust_remote_code=True)
sampling_params = SamplingParams(temperature=0.3, max_tokens=8192)
messages_list = [
[{"role": "user", "content": "Докажи теорему о неподвижной точке"}],
]
prompt_token_ids = [tokenizer.apply_chat_template(messages, add_generation_prompt=True) for messages in messages_list]
outputs = llm.generate(prompt_token_ids=prompt_token_ids, sampling_params=sampling_params)
generated_text = [output.outputs[0].text for output in outputs]
print(generated_text)
```
В GigaChat-20B-A3B-instruct используется особый способ токенизации текста, поэтому **не рекомендуется** следующий сценарий
```python
input_string = tokenizer.apply_chat_template(messages,tokenize=False, add_generation_prompt=True)
input_tensor = tokenizer(input_string, return_tensors="pt")
```
## Пример использования vLLM server
Запуск сервера
```bash
vllm serve ai-sage/GigaChat-20B-A3B-instruct \
--disable-log-requests \
--trust_remote_code \
--dtype bfloat16 \
--max-seq-len 8192
```
Пример запроса
```bash
curl http://localhost:8000/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
"model": "ai-sage/GigaChat-20B-A3B-instruct" ,
"messages": [
{"role": "system", "content": "Ты ОЧЕНЬ умный математик"},
{"role": "user", "content": "Докажи теорему о неподвижной точке"}
]
}'
```