|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: prueba4 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# prueba4 |
|
|
|
This model is a fine-tuned version of [PlanTL-GOB-ES/bsc-bio-ehr-es-pharmaconer](https://huggingface.co/PlanTL-GOB-ES/bsc-bio-ehr-es-pharmaconer) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.2044 |
|
- Precision: 0.7288 |
|
- Recall: 0.6853 |
|
- F1: 0.7064 |
|
- Accuracy: 0.9752 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2.75e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 15 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| No log | 1.0 | 57 | 0.2361 | 0.6504 | 0.6892 | 0.6692 | 0.9694 | |
|
| No log | 2.0 | 114 | 0.2441 | 0.6190 | 0.6733 | 0.6450 | 0.9671 | |
|
| No log | 3.0 | 171 | 0.2064 | 0.6013 | 0.7211 | 0.6558 | 0.9699 | |
|
| No log | 4.0 | 228 | 0.2241 | 0.7004 | 0.6335 | 0.6653 | 0.9720 | |
|
| No log | 5.0 | 285 | 0.1992 | 0.6578 | 0.6892 | 0.6732 | 0.9727 | |
|
| No log | 6.0 | 342 | 0.2149 | 0.6073 | 0.7331 | 0.6643 | 0.9694 | |
|
| No log | 7.0 | 399 | 0.2099 | 0.7466 | 0.6574 | 0.6992 | 0.9755 | |
|
| No log | 8.0 | 456 | 0.2039 | 0.7293 | 0.6653 | 0.6958 | 0.9747 | |
|
| 0.0017 | 9.0 | 513 | 0.2185 | 0.7342 | 0.6494 | 0.6892 | 0.9742 | |
|
| 0.0017 | 10.0 | 570 | 0.2074 | 0.688 | 0.6853 | 0.6866 | 0.9732 | |
|
| 0.0017 | 11.0 | 627 | 0.2010 | 0.7073 | 0.6932 | 0.7002 | 0.9745 | |
|
| 0.0017 | 12.0 | 684 | 0.2030 | 0.7126 | 0.7012 | 0.7068 | 0.9749 | |
|
| 0.0017 | 13.0 | 741 | 0.2045 | 0.7173 | 0.6773 | 0.6967 | 0.9745 | |
|
| 0.0017 | 14.0 | 798 | 0.2040 | 0.7185 | 0.6813 | 0.6994 | 0.9747 | |
|
| 0.0017 | 15.0 | 855 | 0.2044 | 0.7288 | 0.6853 | 0.7064 | 0.9752 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.27.3 |
|
- Pytorch 1.13.1+cu116 |
|
- Datasets 2.10.1 |
|
- Tokenizers 0.13.2 |
|
|