Tinyllama-moe3 / README.md
aipib's picture
Upload folder using huggingface_hub
a3a2d1d verified
|
raw
history blame
1.76 kB
---
license: apache-2.0
tags:
- moe
- frankenmoe
- merge
- mergekit
- lazymergekit
- vihangd/DopeyTinyLlama-1.1B-v1
- Tensoic/TinyLlama-1.1B-3T-openhermes
base_model:
- vihangd/DopeyTinyLlama-1.1B-v1
- Tensoic/TinyLlama-1.1B-3T-openhermes
---
# Dopey-karasu-MoE3
Dopey-karasu-MoE3 is a Mixture of Experts (MoE) made with the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
* [vihangd/DopeyTinyLlama-1.1B-v1](https://huggingface.co/vihangd/DopeyTinyLlama-1.1B-v1)
* [Tensoic/TinyLlama-1.1B-3T-openhermes](https://huggingface.co/Tensoic/TinyLlama-1.1B-3T-openhermes)
## 🧩 Configuration
```yaml
base_model: vihangd/DopeyTinyLlama-1.1B-v1
experts:
- source_model: vihangd/DopeyTinyLlama-1.1B-v1
positive_prompts:
- "chat"
- "assistant"
- "tell me"
- "explain"
- source_model: Tensoic/TinyLlama-1.1B-3T-openhermes
positive_prompts:
- "reason"
- "provide"
- "instruct"
- "summarize"
- "count"
```
## 💻 Usage
```python
!pip install -qU transformers bitsandbytes accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "aipib/Dopey-karasu-MoE3"
tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
"text-generation",
model=model,
model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True},
)
messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}]
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```