Wav2Vec2-Large-XLSR-53-Kazakh
Fine-tuned facebook/wav2vec2-large-xlsr-53 for Kazakh ASR using the Kazakh Speech Corpus v1.1
When using this model, make sure that your speech input is sampled at 16kHz.
Usage
The model can be used directly (without a language model) as follows:
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
from utils import get_test_dataset
test_dataset = get_test_dataset("ISSAI_KSC_335RS_v1.1")
processor = Wav2Vec2Processor.from_pretrained("wav2vec2-large-xlsr-kazakh")
model = Wav2Vec2ForCTC.from_pretrained("wav2vec2-large-xlsr-kazakh")
# Preprocessing the datasets.
# We need to read the audio files as arrays
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = torchaudio.transforms.Resample(sampling_rate, 16_000)(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])
Evaluation
The model can be evaluated as follows on the test set of Kazakh Speech Corpus v1.1. To evaluate, download the archive, untar and pass the path to data to get_test_dataset
as below:
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re
from utils import get_test_dataset
test_dataset = get_test_dataset("ISSAI_KSC_335RS_v1.1")
wer = load_metric("wer")
processor = Wav2Vec2Processor.from_pretrained("adilism/wav2vec2-large-xlsr-kazakh")
model = Wav2Vec2ForCTC.from_pretrained("adilism/wav2vec2-large-xlsr-kazakh")
model.to("cuda")
# Preprocessing the datasets.
# We need to read the audio files as arrays
def speech_file_to_array_fn(batch):
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = torchaudio.transforms.Resample(sampling_rate, 16_000)(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
def evaluate(batch):
inputs = processor(batch["text"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = processor.batch_decode(pred_ids)
return batch
result = test_dataset.map(evaluate, batched=True, batch_size=8)
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
Test Result: 19.65%
Training
The Kazakh Speech Corpus v1.1 train
dataset was used for training.
- Downloads last month
- 304
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for aismlv/wav2vec2-large-xlsr-kazakh
Base model
facebook/wav2vec2-large-xlsr-53Spaces using aismlv/wav2vec2-large-xlsr-kazakh 31
Evaluation results
- Test WER on Kazakh Speech Corpus v1.1self-reported19.650