metadata
license: cc-by-nc-sa-4.0
base_model: microsoft/layoutlmv3-base
tags:
- generated_from_trainer
datasets:
- cord-layoutlmv3
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: layoutlmv3-finetuned-cord_100
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: cord-layoutlmv3
type: cord-layoutlmv3
config: cord
split: test
args: cord
metrics:
- name: Precision
type: precision
value: 0.9561011904761905
- name: Recall
type: recall
value: 0.9618263473053892
- name: F1
type: f1
value: 0.958955223880597
- name: Accuracy
type: accuracy
value: 0.9702886247877759
layoutlmv3-finetuned-cord_100
This model is a fine-tuned version of microsoft/layoutlmv3-base on the cord-layoutlmv3 dataset. It achieves the following results on the evaluation set:
- Loss: 0.1726
- Precision: 0.9561
- Recall: 0.9618
- F1: 0.9590
- Accuracy: 0.9703
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 5
- eval_batch_size: 5
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 3000
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 1.56 | 250 | 1.0075 | 0.7597 | 0.8046 | 0.7815 | 0.8145 |
1.3907 | 3.12 | 500 | 0.5155 | 0.8388 | 0.8683 | 0.8533 | 0.8841 |
1.3907 | 4.69 | 750 | 0.3486 | 0.8917 | 0.9117 | 0.9016 | 0.9283 |
0.3755 | 6.25 | 1000 | 0.2722 | 0.9211 | 0.9356 | 0.9283 | 0.9435 |
0.3755 | 7.81 | 1250 | 0.2399 | 0.9356 | 0.9461 | 0.9408 | 0.9533 |
0.1857 | 9.38 | 1500 | 0.2170 | 0.9376 | 0.9454 | 0.9415 | 0.9542 |
0.1857 | 10.94 | 1750 | 0.1917 | 0.9510 | 0.9588 | 0.9549 | 0.9660 |
0.1236 | 12.5 | 2000 | 0.1821 | 0.9502 | 0.9573 | 0.9538 | 0.9652 |
0.1236 | 14.06 | 2250 | 0.1870 | 0.9538 | 0.9588 | 0.9563 | 0.9669 |
0.0858 | 15.62 | 2500 | 0.1741 | 0.9583 | 0.9633 | 0.9608 | 0.9711 |
0.0858 | 17.19 | 2750 | 0.1726 | 0.9561 | 0.9611 | 0.9586 | 0.9690 |
0.0708 | 18.75 | 3000 | 0.1726 | 0.9561 | 0.9618 | 0.9590 | 0.9703 |
Framework versions
- Transformers 4.35.2
- Pytorch 2.1.1+cu121
- Datasets 2.15.0
- Tokenizers 0.15.0