akanchha's picture
layoutlmv3-finetuned-cord_100
0c697ff
|
raw
history blame
3.12 kB
metadata
license: cc-by-nc-sa-4.0
base_model: microsoft/layoutlmv3-base
tags:
  - generated_from_trainer
datasets:
  - cord-layoutlmv3
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: layoutlmv3-finetuned-cord_100
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: cord-layoutlmv3
          type: cord-layoutlmv3
          config: cord
          split: test
          args: cord
        metrics:
          - name: Precision
            type: precision
            value: 0.9561011904761905
          - name: Recall
            type: recall
            value: 0.9618263473053892
          - name: F1
            type: f1
            value: 0.958955223880597
          - name: Accuracy
            type: accuracy
            value: 0.9702886247877759

layoutlmv3-finetuned-cord_100

This model is a fine-tuned version of microsoft/layoutlmv3-base on the cord-layoutlmv3 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1726
  • Precision: 0.9561
  • Recall: 0.9618
  • F1: 0.9590
  • Accuracy: 0.9703

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 5
  • eval_batch_size: 5
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 3000

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.56 250 1.0075 0.7597 0.8046 0.7815 0.8145
1.3907 3.12 500 0.5155 0.8388 0.8683 0.8533 0.8841
1.3907 4.69 750 0.3486 0.8917 0.9117 0.9016 0.9283
0.3755 6.25 1000 0.2722 0.9211 0.9356 0.9283 0.9435
0.3755 7.81 1250 0.2399 0.9356 0.9461 0.9408 0.9533
0.1857 9.38 1500 0.2170 0.9376 0.9454 0.9415 0.9542
0.1857 10.94 1750 0.1917 0.9510 0.9588 0.9549 0.9660
0.1236 12.5 2000 0.1821 0.9502 0.9573 0.9538 0.9652
0.1236 14.06 2250 0.1870 0.9538 0.9588 0.9563 0.9669
0.0858 15.62 2500 0.1741 0.9583 0.9633 0.9608 0.9711
0.0858 17.19 2750 0.1726 0.9561 0.9611 0.9586 0.9690
0.0708 18.75 3000 0.1726 0.9561 0.9618 0.9590 0.9703

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.1+cu121
  • Datasets 2.15.0
  • Tokenizers 0.15.0