Edit model card

primo_test

This model is a fine-tuned version of microsoft/layoutlmv3-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0105
  • Precision: 0.9744
  • Recall: 0.9902
  • F1: 0.9822
  • Accuracy: 0.9979

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 1000

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 0.03 100 0.4646 0.8275 0.8656 0.8461 0.9306
No log 0.06 200 0.0824 0.9614 0.9722 0.9667 0.9948
No log 0.08 300 0.0363 0.9622 0.9859 0.9739 0.9951
No log 0.11 400 0.0182 0.9756 0.9912 0.9833 0.9980
0.3067 0.14 500 0.0217 0.9578 0.9813 0.9694 0.9960
0.3067 0.17 600 0.0106 0.9913 0.9946 0.9929 0.9988
0.3067 0.19 700 0.0121 0.9733 0.9894 0.9812 0.9977
0.3067 0.22 800 0.0126 0.9699 0.9881 0.9789 0.9975
0.3067 0.25 900 0.0098 0.9778 0.9915 0.9846 0.9982
0.0105 0.28 1000 0.0105 0.9744 0.9902 0.9822 0.9979

Framework versions

  • Transformers 4.36.1
  • Pytorch 2.1.1+cu121
  • Datasets 2.15.0
  • Tokenizers 0.15.0
Downloads last month
2
Safetensors
Model size
126M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for alexbeta80/layoutlmtest

Finetuned
(210)
this model