wav2vec2-xlsr-1b-mecita-portuguese-all-text-protecao_aos_pandas-os_morcegos

This model is a fine-tuned version of jonatasgrosman/wav2vec2-xls-r-1b-portuguese on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2197
  • Wer: 0.0981
  • Cer: 0.0334

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 100
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
13.2168 0.98 21 2.9122 1.0 1.0
13.2168 2.0 43 2.9751 1.0 1.0
13.2168 2.98 64 2.8292 1.0 1.0
13.2168 4.0 86 2.5873 0.9992 0.9999
3.3173 4.98 107 1.0785 0.8941 0.2358
3.3173 6.0 129 0.3222 0.2305 0.0611
3.3173 6.98 150 0.2691 0.1363 0.0425
3.3173 8.0 172 0.2318 0.1168 0.0373
3.3173 8.98 193 0.2221 0.0966 0.0339
0.5524 10.0 215 0.2299 0.1028 0.0349
0.5524 10.98 236 0.2225 0.0911 0.0322
0.5524 12.0 258 0.2197 0.0981 0.0334
0.5524 12.98 279 0.2268 0.0919 0.0323
0.2169 14.0 301 0.2250 0.0966 0.0330
0.2169 14.98 322 0.2343 0.0950 0.0337
0.2169 16.0 344 0.2350 0.0942 0.0329
0.2169 16.98 365 0.2256 0.0919 0.0319
0.2169 18.0 387 0.2336 0.0802 0.0308
0.1634 18.98 408 0.2233 0.0826 0.0306
0.1634 20.0 430 0.2344 0.0826 0.0306
0.1634 20.98 451 0.2270 0.0818 0.0301
0.1634 22.0 473 0.2260 0.0857 0.0305
0.1634 22.98 494 0.2460 0.0841 0.0305
0.1322 24.0 516 0.2343 0.0748 0.0292
0.1322 24.98 537 0.2455 0.0794 0.0297
0.1322 26.0 559 0.2429 0.0787 0.0293
0.1322 26.98 580 0.2337 0.0810 0.0304
0.1123 28.0 602 0.2428 0.0794 0.0296
0.1123 28.98 623 0.2420 0.0755 0.0294
0.1123 30.0 645 0.2447 0.0787 0.0292
0.1123 30.98 666 0.2496 0.0763 0.0288
0.1123 32.0 688 0.2537 0.0787 0.0290

Framework versions

  • Transformers 4.28.0
  • Pytorch 2.2.1+cu121
  • Datasets 2.17.0
  • Tokenizers 0.13.3
Downloads last month
14
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.