alinerodrigues
commited on
Commit
•
a0e9b53
1
Parent(s):
175edbb
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- wer
|
7 |
+
model-index:
|
8 |
+
- name: wav2vec2-xlsr-1b-mecita-portuguese-all-text-protecao_aos_pandas-os_morcegos
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# wav2vec2-xlsr-1b-mecita-portuguese-all-text-protecao_aos_pandas-os_morcegos
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [jonatasgrosman/wav2vec2-xls-r-1b-portuguese](https://huggingface.co/jonatasgrosman/wav2vec2-xls-r-1b-portuguese) on an unknown dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 0.2537
|
20 |
+
- Wer: 0.0787
|
21 |
+
- Cer: 0.0290
|
22 |
+
|
23 |
+
## Model description
|
24 |
+
|
25 |
+
More information needed
|
26 |
+
|
27 |
+
## Intended uses & limitations
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Training and evaluation data
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training procedure
|
36 |
+
|
37 |
+
### Training hyperparameters
|
38 |
+
|
39 |
+
The following hyperparameters were used during training:
|
40 |
+
- learning_rate: 3e-05
|
41 |
+
- train_batch_size: 16
|
42 |
+
- eval_batch_size: 8
|
43 |
+
- seed: 42
|
44 |
+
- gradient_accumulation_steps: 2
|
45 |
+
- total_train_batch_size: 32
|
46 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
47 |
+
- lr_scheduler_type: linear
|
48 |
+
- num_epochs: 100
|
49 |
+
- mixed_precision_training: Native AMP
|
50 |
+
|
51 |
+
### Training results
|
52 |
+
|
53 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
|
54 |
+
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|
|
55 |
+
| 13.2168 | 0.98 | 21 | 2.9122 | 1.0 | 1.0 |
|
56 |
+
| 13.2168 | 2.0 | 43 | 2.9751 | 1.0 | 1.0 |
|
57 |
+
| 13.2168 | 2.98 | 64 | 2.8292 | 1.0 | 1.0 |
|
58 |
+
| 13.2168 | 4.0 | 86 | 2.5873 | 0.9992 | 0.9999 |
|
59 |
+
| 3.3173 | 4.98 | 107 | 1.0785 | 0.8941 | 0.2358 |
|
60 |
+
| 3.3173 | 6.0 | 129 | 0.3222 | 0.2305 | 0.0611 |
|
61 |
+
| 3.3173 | 6.98 | 150 | 0.2691 | 0.1363 | 0.0425 |
|
62 |
+
| 3.3173 | 8.0 | 172 | 0.2318 | 0.1168 | 0.0373 |
|
63 |
+
| 3.3173 | 8.98 | 193 | 0.2221 | 0.0966 | 0.0339 |
|
64 |
+
| 0.5524 | 10.0 | 215 | 0.2299 | 0.1028 | 0.0349 |
|
65 |
+
| 0.5524 | 10.98 | 236 | 0.2225 | 0.0911 | 0.0322 |
|
66 |
+
| 0.5524 | 12.0 | 258 | 0.2197 | 0.0981 | 0.0334 |
|
67 |
+
| 0.5524 | 12.98 | 279 | 0.2268 | 0.0919 | 0.0323 |
|
68 |
+
| 0.2169 | 14.0 | 301 | 0.2250 | 0.0966 | 0.0330 |
|
69 |
+
| 0.2169 | 14.98 | 322 | 0.2343 | 0.0950 | 0.0337 |
|
70 |
+
| 0.2169 | 16.0 | 344 | 0.2350 | 0.0942 | 0.0329 |
|
71 |
+
| 0.2169 | 16.98 | 365 | 0.2256 | 0.0919 | 0.0319 |
|
72 |
+
| 0.2169 | 18.0 | 387 | 0.2336 | 0.0802 | 0.0308 |
|
73 |
+
| 0.1634 | 18.98 | 408 | 0.2233 | 0.0826 | 0.0306 |
|
74 |
+
| 0.1634 | 20.0 | 430 | 0.2344 | 0.0826 | 0.0306 |
|
75 |
+
| 0.1634 | 20.98 | 451 | 0.2270 | 0.0818 | 0.0301 |
|
76 |
+
| 0.1634 | 22.0 | 473 | 0.2260 | 0.0857 | 0.0305 |
|
77 |
+
| 0.1634 | 22.98 | 494 | 0.2460 | 0.0841 | 0.0305 |
|
78 |
+
| 0.1322 | 24.0 | 516 | 0.2343 | 0.0748 | 0.0292 |
|
79 |
+
| 0.1322 | 24.98 | 537 | 0.2455 | 0.0794 | 0.0297 |
|
80 |
+
| 0.1322 | 26.0 | 559 | 0.2429 | 0.0787 | 0.0293 |
|
81 |
+
| 0.1322 | 26.98 | 580 | 0.2337 | 0.0810 | 0.0304 |
|
82 |
+
| 0.1123 | 28.0 | 602 | 0.2428 | 0.0794 | 0.0296 |
|
83 |
+
| 0.1123 | 28.98 | 623 | 0.2420 | 0.0755 | 0.0294 |
|
84 |
+
| 0.1123 | 30.0 | 645 | 0.2447 | 0.0787 | 0.0292 |
|
85 |
+
| 0.1123 | 30.98 | 666 | 0.2496 | 0.0763 | 0.0288 |
|
86 |
+
| 0.1123 | 32.0 | 688 | 0.2537 | 0.0787 | 0.0290 |
|
87 |
+
|
88 |
+
|
89 |
+
### Framework versions
|
90 |
+
|
91 |
+
- Transformers 4.28.0
|
92 |
+
- Pytorch 2.2.1+cu121
|
93 |
+
- Datasets 2.17.0
|
94 |
+
- Tokenizers 0.13.3
|