Edit model card

SeizureClassifier_Wav2Vec_43243498

This model is a fine-tuned version of facebook/wav2vec2-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0520
  • Accuracy: 0.9901

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 15
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.1121 0.99 44 0.9842 0.8144
0.6303 1.99 88 0.5874 0.8861
0.4605 2.98 132 0.3826 0.9406
0.323 4.0 177 0.2791 0.9530
0.2435 4.99 221 0.3828 0.8688
0.2354 5.99 265 0.1321 0.9752
0.2491 6.98 309 0.1552 0.9653
0.1116 8.0 354 0.1540 0.9579
0.0934 8.99 398 0.1053 0.9827
0.0774 9.99 442 0.1016 0.9777
0.0553 10.98 486 0.1856 0.9530
0.0368 12.0 531 0.1151 0.9728
0.017 12.99 575 0.0516 0.9876
0.0153 13.99 619 0.0540 0.9901
0.0144 14.92 660 0.0520 0.9901

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.1.2+cu118
  • Datasets 2.16.1
  • Tokenizers 0.15.0
Downloads last month
6
Safetensors
Model size
94.6M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for alirzb/SeizureClassifier_Wav2Vec_43243498

Finetuned
(650)
this model