alirzb's picture
Model save
31e9b9e verified
metadata
license: apache-2.0
base_model: facebook/wav2vec2-base
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: SeizureClassifier_Wav2Vec_43243531
    results: []

SeizureClassifier_Wav2Vec_43243531

This model is a fine-tuned version of facebook/wav2vec2-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0063
  • Accuracy: 0.9990

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 15
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.13 1.0 339 0.1382 0.9616
0.0931 2.0 678 0.0613 0.9839
0.0265 3.0 1017 0.0248 0.9942
0.026 4.0 1357 0.0612 0.9900
0.0252 5.0 1696 0.0460 0.9894
0.0369 6.0 2035 0.0148 0.9968
0.0018 7.0 2374 0.0049 0.9990
0.0007 8.0 2714 0.0114 0.9981
0.0056 9.0 3053 0.0107 0.9987
0.0003 10.0 3392 0.0067 0.9990
0.0101 11.0 3731 0.0039 0.9994
0.0073 12.0 4071 0.0049 0.9994
0.0113 13.0 4410 0.0061 0.9990
0.0002 14.0 4749 0.0067 0.9990
0.0002 14.99 5085 0.0063 0.9990

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.1.2+cu118
  • Datasets 2.16.1
  • Tokenizers 0.15.0