metadata
license: other
library_name: peft
tags:
- trl
- sft
- generated_from_trainer
base_model: taide/TAIDE-LX-7B-Chat
model-index:
- name: ROE_QA_TAIDE-LX-7B-Chat_Q100_80_20_V6
results: []
ROE_QA_TAIDE-LX-7B-Chat_Q100_80_20_V6
This model is a fine-tuned version of taide/TAIDE-LX-7B-Chat on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.3442
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
4.8628 | 0.0321 | 100 | 3.4692 |
4.6437 | 0.0643 | 200 | 3.2308 |
3.8154 | 0.0964 | 300 | 2.8144 |
3.3006 | 0.1285 | 400 | 2.5033 |
2.953 | 0.1607 | 500 | 2.2690 |
2.2844 | 0.1928 | 600 | 1.9550 |
2.134 | 0.2249 | 700 | 1.7888 |
1.8182 | 0.2571 | 800 | 1.6310 |
1.6776 | 0.2892 | 900 | 1.5062 |
1.6317 | 0.3213 | 1000 | 1.4026 |
1.6311 | 0.3535 | 1100 | 1.2253 |
1.1003 | 0.3856 | 1200 | 1.0703 |
1.2014 | 0.4177 | 1300 | 1.0672 |
0.9489 | 0.4499 | 1400 | 0.9135 |
1.0068 | 0.4820 | 1500 | 0.8950 |
1.0342 | 0.5141 | 1600 | 0.8074 |
0.9713 | 0.5463 | 1700 | 0.7767 |
0.9598 | 0.5784 | 1800 | 0.6995 |
0.9357 | 0.6105 | 1900 | 0.6643 |
0.8298 | 0.6427 | 2000 | 0.6456 |
0.8803 | 0.6748 | 2100 | 0.6164 |
0.8899 | 0.7069 | 2200 | 0.5867 |
0.7877 | 0.7391 | 2300 | 0.5748 |
0.7792 | 0.7712 | 2400 | 0.5513 |
0.8387 | 0.8033 | 2500 | 0.5267 |
0.8625 | 0.8355 | 2600 | 0.5111 |
0.8514 | 0.8676 | 2700 | 0.4992 |
0.762 | 0.8997 | 2800 | 0.4881 |
0.779 | 0.9319 | 2900 | 0.4840 |
0.8938 | 0.9640 | 3000 | 0.4676 |
0.7007 | 0.9961 | 3100 | 0.4668 |
0.7006 | 1.0283 | 3200 | 0.4500 |
0.6622 | 1.0604 | 3300 | 0.4383 |
0.6724 | 1.0925 | 3400 | 0.4404 |
0.6551 | 1.1247 | 3500 | 0.4372 |
0.6395 | 1.1568 | 3600 | 0.4273 |
0.6317 | 1.1889 | 3700 | 0.4217 |
0.6683 | 1.2211 | 3800 | 0.4218 |
0.6987 | 1.2532 | 3900 | 0.4136 |
0.7309 | 1.2853 | 4000 | 0.4151 |
0.6192 | 1.3175 | 4100 | 0.4092 |
0.6013 | 1.3496 | 4200 | 0.4109 |
0.6138 | 1.3817 | 4300 | 0.4069 |
0.6224 | 1.4139 | 4400 | 0.4001 |
0.6414 | 1.4460 | 4500 | 0.3942 |
0.6234 | 1.4781 | 4600 | 0.3949 |
0.6365 | 1.5103 | 4700 | 0.3914 |
0.6602 | 1.5424 | 4800 | 0.3908 |
0.6646 | 1.5746 | 4900 | 0.3916 |
0.6295 | 1.6067 | 5000 | 0.3832 |
0.6379 | 1.6388 | 5100 | 0.3828 |
0.6544 | 1.6710 | 5200 | 0.3836 |
0.6224 | 1.7031 | 5300 | 0.3905 |
0.5892 | 1.7352 | 5400 | 0.3785 |
0.5985 | 1.7674 | 5500 | 0.3794 |
0.5776 | 1.7995 | 5600 | 0.3751 |
0.5799 | 1.8316 | 5700 | 0.3745 |
0.6247 | 1.8638 | 5800 | 0.3742 |
0.5724 | 1.8959 | 5900 | 0.3716 |
0.627 | 1.9280 | 6000 | 0.3750 |
0.566 | 1.9602 | 6100 | 0.3720 |
0.5754 | 1.9923 | 6200 | 0.3706 |
0.3561 | 2.0244 | 6300 | 0.3685 |
0.4468 | 2.0566 | 6400 | 0.3663 |
0.392 | 2.0887 | 6500 | 0.3669 |
0.4049 | 2.1208 | 6600 | 0.3659 |
0.3967 | 2.1530 | 6700 | 0.3649 |
0.418 | 2.1851 | 6800 | 0.3662 |
0.4973 | 2.2172 | 6900 | 0.3630 |
0.3685 | 2.2494 | 7000 | 0.3627 |
0.3967 | 2.2815 | 7100 | 0.3618 |
0.3921 | 2.3136 | 7200 | 0.3580 |
0.3905 | 2.3458 | 7300 | 0.3595 |
0.3888 | 2.3779 | 7400 | 0.3574 |
0.4403 | 2.4100 | 7500 | 0.3571 |
0.4343 | 2.4422 | 7600 | 0.3574 |
0.4088 | 2.4743 | 7700 | 0.3549 |
0.3924 | 2.5064 | 7800 | 0.3560 |
0.4383 | 2.5386 | 7900 | 0.3540 |
0.3786 | 2.5707 | 8000 | 0.3525 |
0.3779 | 2.6028 | 8100 | 0.3518 |
0.4555 | 2.6350 | 8200 | 0.3519 |
0.3813 | 2.6671 | 8300 | 0.3497 |
0.375 | 2.6992 | 8400 | 0.3505 |
0.3889 | 2.7314 | 8500 | 0.3493 |
0.3524 | 2.7635 | 8600 | 0.3469 |
0.431 | 2.7956 | 8700 | 0.3480 |
0.4185 | 2.8278 | 8800 | 0.3471 |
0.378 | 2.8599 | 8900 | 0.3487 |
0.3978 | 2.8920 | 9000 | 0.3457 |
0.421 | 2.9242 | 9100 | 0.3461 |
0.3691 | 2.9563 | 9200 | 0.3443 |
0.4019 | 2.9884 | 9300 | 0.3446 |
0.2392 | 3.0206 | 9400 | 0.3473 |
0.2213 | 3.0527 | 9500 | 0.3443 |
0.2189 | 3.0848 | 9600 | 0.3437 |
0.2363 | 3.1170 | 9700 | 0.3442 |
Framework versions
- PEFT 0.12.1.dev0
- Transformers 4.44.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1