CamemBERT: a Tasty French Language Model
Introduction
CamemBERT is a state-of-the-art language model for French based on the RoBERTa model.
It is now available on Hugging Face in 6 different versions with varying number of parameters, amount of pretraining data and pretraining data source domains.
For further information or requests, please go to Camembert Website
Pre-trained models
Model | #params | Arch. | Training data |
---|---|---|---|
camembert-base |
110M | Base | OSCAR (138 GB of text) |
camembert/camembert-large |
335M | Large | CCNet (135 GB of text) |
camembert/camembert-base-ccnet |
110M | Base | CCNet (135 GB of text) |
camembert/camembert-base-wikipedia-4gb |
110M | Base | Wikipedia (4 GB of text) |
camembert/camembert-base-oscar-4gb |
110M | Base | Subsample of OSCAR (4 GB of text) |
camembert/camembert-base-ccnet-4gb |
110M | Base | Subsample of CCNet (4 GB of text) |
How to use CamemBERT with HuggingFace
Load CamemBERT and its sub-word tokenizer :
from transformers import CamembertModel, CamembertTokenizer
# You can replace "camembert-base" with any other model from the table, e.g. "camembert/camembert-large".
tokenizer = CamembertTokenizer.from_pretrained("camembert/camembert-large")
camembert = CamembertModel.from_pretrained("camembert/camembert-large")
camembert.eval() # disable dropout (or leave in train mode to finetune)
Filling masks using pipeline
from transformers import pipeline
camembert_fill_mask = pipeline("fill-mask", model="camembert/camembert-large", tokenizer="camembert/camembert-large")
results = camembert_fill_mask("Le camembert est <mask> :)")
# results
#[{'sequence': '<s> Le camembert est bon :)</s>', 'score': 0.15560828149318695, 'token': 305},
#{'sequence': '<s> Le camembert est excellent :)</s>', 'score': 0.06821336597204208, 'token': 3497},
#{'sequence': '<s> Le camembert est délicieux :)</s>', 'score': 0.060438305139541626, 'token': 11661},
#{'sequence': '<s> Le camembert est ici :)</s>', 'score': 0.02023460529744625, 'token': 373},
#{'sequence': '<s> Le camembert est meilleur :)</s>', 'score': 0.01778135634958744, 'token': 876}]
Extract contextual embedding features from Camembert output
import torch
# Tokenize in sub-words with SentencePiece
tokenized_sentence = tokenizer.tokenize("J'aime le camembert !")
# ['▁J', "'", 'aime', '▁le', '▁cam', 'ember', 't', '▁!']
# 1-hot encode and add special starting and end tokens
encoded_sentence = tokenizer.encode(tokenized_sentence)
# [5, 133, 22, 1250, 16, 12034, 14324, 81, 76, 6]
# NB: Can be done in one step : tokenize.encode("J'aime le camembert !")
# Feed tokens to Camembert as a torch tensor (batch dim 1)
encoded_sentence = torch.tensor(encoded_sentence).unsqueeze(0)
embeddings, _ = camembert(encoded_sentence)
# embeddings.detach()
# torch.Size([1, 10, 1024])
#tensor([[[-0.1284, 0.2643, 0.4374, ..., 0.1627, 0.1308, -0.2305],
# [ 0.4576, -0.6345, -0.2029, ..., -0.1359, -0.2290, -0.6318],
# [ 0.0381, 0.0429, 0.5111, ..., -0.1177, -0.1913, -0.1121],
# ...,
Extract contextual embedding features from all Camembert layers
from transformers import CamembertConfig
# (Need to reload the model with new config)
config = CamembertConfig.from_pretrained("camembert/camembert-large", output_hidden_states=True)
camembert = CamembertModel.from_pretrained("camembert/camembert-large", config=config)
embeddings, _, all_layer_embeddings = camembert(encoded_sentence)
# all_layer_embeddings list of len(all_layer_embeddings) == 25 (input embedding layer + 24 self attention layers)
all_layer_embeddings[5]
# layer 5 contextual embedding : size torch.Size([1, 10, 1024])
#tensor([[[-0.0600, 0.0742, 0.0332, ..., -0.0525, -0.0637, -0.0287],
# [ 0.0950, 0.2840, 0.1985, ..., 0.2073, -0.2172, -0.6321],
# [ 0.1381, 0.1872, 0.1614, ..., -0.0339, -0.2530, -0.1182],
# ...,
Authors
CamemBERT was trained and evaluated by Louis Martin*, Benjamin Muller*, Pedro Javier Ortiz Suárez*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot.
Citation
If you use our work, please cite:
@inproceedings{martin2020camembert,
title={CamemBERT: a Tasty French Language Model},
author={Martin, Louis and Muller, Benjamin and Su{\'a}rez, Pedro Javier Ortiz and Dupont, Yoann and Romary, Laurent and de la Clergerie, {\'E}ric Villemonte and Seddah, Djam{\'e} and Sagot, Beno{\^\i}t},
booktitle={Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics},
year={2020}
}
- Downloads last month
- 11,567