metadata
tags:
- generated_from_trainer
datasets:
- samsum
metrics:
- rouge
base_model: google/pegasus-cnn_dailymail
model-index:
- name: pegasus-cnn_dailymail-finetuned-samsum-v2
results:
- task:
type: text2text-generation
name: Sequence-to-sequence Language Modeling
dataset:
name: samsum
type: samsum
config: samsum
split: train
args: samsum
metrics:
- type: rouge
value: 45.3045
name: Rouge1
pegasus-cnn_dailymail-finetuned-samsum-v2
This model is a fine-tuned version of google/pegasus-cnn_dailymail on the samsum dataset. It achieves the following results on the evaluation set:
- Loss: 1.5218
- Rouge1: 45.3045
- Rouge2: 21.7601
- Rougel: 35.8643
- Rougelsum: 41.6595
- Gen Len: 35.4425
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
---|---|---|---|---|---|---|---|---|
1.6997 | 1.0 | 1841 | 1.5218 | 45.3045 | 21.7601 | 35.8643 | 41.6595 | 35.4425 |
Framework versions
- Transformers 4.24.0
- Pytorch 1.12.1+cu113
- Datasets 2.7.1
- Tokenizers 0.13.2