metadata
library_name: transformers
license: apache-2.0
base_model: facebook/dinov2-base
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: dinov2-base-finetuned-har
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.8968253968253969
dinov2-base-finetuned-har
This model is a fine-tuned version of facebook/dinov2-base on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.4424
- Accuracy: 0.8968
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.9155 | 0.9910 | 83 | 0.6204 | 0.8053 |
0.749 | 1.9940 | 167 | 0.4433 | 0.8667 |
0.8197 | 2.9970 | 251 | 0.4826 | 0.8571 |
0.6854 | 4.0 | 335 | 0.4243 | 0.8725 |
0.7058 | 4.9910 | 418 | 0.4349 | 0.8593 |
0.6717 | 5.9940 | 502 | 0.4984 | 0.8434 |
0.6544 | 6.9970 | 586 | 0.4730 | 0.8545 |
0.5846 | 8.0 | 670 | 0.4631 | 0.8630 |
0.5207 | 8.9910 | 753 | 0.4072 | 0.8751 |
0.4977 | 9.9940 | 837 | 0.4627 | 0.8608 |
0.4974 | 10.9970 | 921 | 0.4600 | 0.8661 |
0.4502 | 12.0 | 1005 | 0.4548 | 0.8725 |
0.4051 | 12.9910 | 1088 | 0.4404 | 0.8709 |
0.3862 | 13.9940 | 1172 | 0.4498 | 0.8772 |
0.351 | 14.9970 | 1256 | 0.4859 | 0.8677 |
0.3807 | 16.0 | 1340 | 0.5189 | 0.8556 |
0.3538 | 16.9910 | 1423 | 0.4959 | 0.8646 |
0.3181 | 17.9940 | 1507 | 0.4831 | 0.8698 |
0.3225 | 18.9970 | 1591 | 0.4890 | 0.8804 |
0.3257 | 20.0 | 1675 | 0.4817 | 0.8735 |
0.2667 | 20.9910 | 1758 | 0.5199 | 0.8683 |
0.2863 | 21.9940 | 1842 | 0.4835 | 0.8683 |
0.2527 | 22.9970 | 1926 | 0.4764 | 0.8772 |
0.2657 | 24.0 | 2010 | 0.4651 | 0.8767 |
0.1995 | 24.9910 | 2093 | 0.5079 | 0.8693 |
0.2481 | 25.9940 | 2177 | 0.5112 | 0.8698 |
0.2072 | 26.9970 | 2261 | 0.5082 | 0.8831 |
0.2164 | 28.0 | 2345 | 0.5002 | 0.8730 |
0.2198 | 28.9910 | 2428 | 0.4785 | 0.8778 |
0.2137 | 29.9940 | 2512 | 0.5012 | 0.8889 |
0.1936 | 30.9970 | 2596 | 0.4961 | 0.8757 |
0.2255 | 32.0 | 2680 | 0.4987 | 0.8788 |
0.1818 | 32.9910 | 2763 | 0.4840 | 0.8852 |
0.1644 | 33.9940 | 2847 | 0.4694 | 0.8862 |
0.1799 | 34.9970 | 2931 | 0.4599 | 0.8915 |
0.1624 | 36.0 | 3015 | 0.5122 | 0.8852 |
0.157 | 36.9910 | 3098 | 0.4546 | 0.8899 |
0.2165 | 37.9940 | 3182 | 0.5097 | 0.8836 |
0.1565 | 38.9970 | 3266 | 0.4566 | 0.8952 |
0.1476 | 40.0 | 3350 | 0.4579 | 0.8915 |
0.1296 | 40.9910 | 3433 | 0.4595 | 0.8931 |
0.1159 | 41.9940 | 3517 | 0.4841 | 0.8884 |
0.1071 | 42.9970 | 3601 | 0.4730 | 0.8820 |
0.1017 | 44.0 | 3685 | 0.4470 | 0.8931 |
0.11 | 44.9910 | 3768 | 0.4557 | 0.8910 |
0.126 | 45.9940 | 3852 | 0.4585 | 0.8926 |
0.1079 | 46.9970 | 3936 | 0.4551 | 0.8905 |
0.1194 | 48.0 | 4020 | 0.4401 | 0.8947 |
0.11 | 48.9910 | 4103 | 0.4424 | 0.8968 |
0.1104 | 49.5522 | 4150 | 0.4414 | 0.8958 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1