Edit model card

AIMv2-Large-Patch14-Native Image Classification

Original AIMv2 Paper | BibTeX

This repository contains an adapted version of the original AIMv2 model, modified to be compatible with the AutoModelForImageClassification class from Hugging Face Transformers. This adaptation enables seamless use of the model for image classification tasks.

This model has not been trained/fine-tuned

Introduction

We have adapted the original apple/aimv2-large-patch14-native model to work with AutoModelForImageClassification. The AIMv2 family consists of vision models pre-trained with a multimodal autoregressive objective, offering robust performance across various benchmarks.

Some highlights of the AIMv2 models include:

  1. Outperforming OAI CLIP and SigLIP on the majority of multimodal understanding benchmarks.
  2. Surpassing DINOv2 in open-vocabulary object detection and referring expression comprehension.
  3. Demonstrating strong recognition performance, with AIMv2-3B achieving 89.5% on ImageNet using a frozen trunk.

Usage

PyTorch

import requests
from PIL import Image
from transformers import AutoImageProcessor, AutoModelForImageClassification

url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)

processor = AutoImageProcessor.from_pretrained(
    "amaye15/aimv2-large-patch14-native-image-classification",
)
model = AutoModelForImageClassification.from_pretrained(
    "amaye15/aimv2-large-patch14-native-image-classification",
    trust_remote_code=True,
)

inputs = processor(images=image, return_tensors="pt")
outputs = model(**inputs)

# Get predicted class
predictions = outputs.logits.softmax(dim=-1)
predicted_class = predictions.argmax(-1).item()

print(f"Predicted class: {model.config.id2label[predicted_class]}")

Model Details

  • Model Name: amaye15/aimv2-large-patch14-native-image-classification
  • Original Model: apple/aimv2-large-patch14-native
  • Adaptation: Modified to be compatible with AutoModelForImageClassification for direct use in image classification tasks.
  • Framework: PyTorch

Citation

If you use this model or find it helpful, please consider citing the original AIMv2 paper:

@article{yang2023aimv2,
  title={AIMv2: Advances in Multimodal Vision Models},
  author={Yang, Li and others},
  journal={arXiv preprint arXiv:2411.14402},
  year={2023}
}
Downloads last month
13
Safetensors
Model size
310M params
Tensor type
F32
·
Inference Examples
Inference API (serverless) does not yet support model repos that contain custom code.

Model tree for amaye15/aimv2-large-patch14-native-image-classification

Finetuned
(1)
this model