|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- imagefolder |
|
metrics: |
|
- accuracy |
|
- precision |
|
model-index: |
|
- name: swin-base-patch4-window7-224-in22k-finetuned-brain-tumor-final_08 |
|
results: |
|
- task: |
|
name: Image Classification |
|
type: image-classification |
|
dataset: |
|
name: imagefolder |
|
type: imagefolder |
|
config: default |
|
split: train |
|
args: default |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.9536527886881383 |
|
- name: Precision |
|
type: precision |
|
value: 0.9563791141223957 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# swin-base-patch4-window7-224-in22k-finetuned-brain-tumor-final_08 |
|
|
|
This model is a fine-tuned version of [microsoft/swin-base-patch4-window7-224-in22k](https://huggingface.co/microsoft/swin-base-patch4-window7-224-in22k) on the imagefolder dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1422 |
|
- Accuracy: 0.9537 |
|
- F1 Score: 0.9549 |
|
- Precision: 0.9564 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 100 |
|
- eval_batch_size: 100 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 400 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Score | Precision | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:---------:| |
|
| 1.3618 | 0.99 | 19 | 0.6238 | 0.7541 | 0.7431 | 0.7821 | |
|
| 0.3833 | 1.97 | 38 | 0.3097 | 0.8865 | 0.8884 | 0.8970 | |
|
| 0.2011 | 2.96 | 57 | 0.2600 | 0.9053 | 0.9078 | 0.9171 | |
|
| 0.1124 | 4.0 | 77 | 0.1793 | 0.9328 | 0.9342 | 0.9381 | |
|
| 0.0711 | 4.99 | 96 | 0.1385 | 0.9497 | 0.9509 | 0.9522 | |
|
| 0.0518 | 5.97 | 115 | 0.1506 | 0.9485 | 0.9501 | 0.9523 | |
|
| 0.0393 | 6.96 | 134 | 0.1422 | 0.9537 | 0.9549 | 0.9564 | |
|
| 0.0361 | 8.0 | 154 | 0.1545 | 0.9482 | 0.9497 | 0.9522 | |
|
| 0.025 | 8.99 | 173 | 0.1482 | 0.9501 | 0.9516 | 0.9541 | |
|
| 0.0204 | 9.87 | 190 | 0.1474 | 0.9513 | 0.9527 | 0.9550 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.29.2 |
|
- Pytorch 2.0.1+cu117 |
|
- Datasets 2.12.0 |
|
- Tokenizers 0.13.3 |
|
|