SetFit with sentence-transformers/paraphrase-mpnet-base-v2
This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/paraphrase-mpnet-base-v2 as the Sentence Transformer embedding model. A OneVsRestClassifier instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: sentence-transformers/paraphrase-mpnet-base-v2
- Classification head: a OneVsRestClassifier instance
- Maximum Sequence Length: 512 tokens
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Evaluation
Metrics
Label | Accuracy |
---|---|
all | 0.5849 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("anismahmahi/G2-multilabel-setfit-model")
# Run inference
preds = model("It was a jihad training camp.
")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 1 | 26.6518 | 129 |
Training Hyperparameters
- batch_size: (16, 16)
- num_epochs: (2, 2)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 10
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: True
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0006 | 1 | 0.3905 | - |
0.0275 | 50 | 0.2239 | - |
0.0550 | 100 | 0.2359 | - |
0.0826 | 150 | 0.2443 | - |
0.1101 | 200 | 0.2495 | - |
0.1376 | 250 | 0.2498 | - |
0.1651 | 300 | 0.116 | - |
0.1926 | 350 | 0.1672 | - |
0.2201 | 400 | 0.1281 | - |
0.2477 | 450 | 0.139 | - |
0.2752 | 500 | 0.0615 | - |
0.3027 | 550 | 0.0972 | - |
0.3302 | 600 | 0.0851 | - |
0.3577 | 650 | 0.1769 | - |
0.3853 | 700 | 0.1673 | - |
0.4128 | 750 | 0.0615 | - |
0.4403 | 800 | 0.1232 | - |
0.4678 | 850 | 0.0094 | - |
0.4953 | 900 | 0.0135 | - |
0.5228 | 950 | 0.0107 | - |
0.5504 | 1000 | 0.1137 | - |
0.5779 | 1050 | 0.0173 | - |
0.6054 | 1100 | 0.0573 | - |
0.6329 | 1150 | 0.0115 | - |
0.6604 | 1200 | 0.0374 | - |
0.6879 | 1250 | 0.0231 | - |
0.7155 | 1300 | 0.0392 | - |
0.7430 | 1350 | 0.0754 | - |
0.7705 | 1400 | 0.007 | - |
0.7980 | 1450 | 0.0138 | - |
0.8255 | 1500 | 0.0569 | - |
0.8531 | 1550 | 0.0971 | - |
0.8806 | 1600 | 0.1052 | - |
0.9081 | 1650 | 0.0084 | - |
0.9356 | 1700 | 0.0859 | - |
0.9631 | 1750 | 0.0081 | - |
0.9906 | 1800 | 0.0362 | - |
1.0 | 1817 | - | 0.2354 |
1.0182 | 1850 | 0.0429 | - |
1.0457 | 1900 | 0.056 | - |
1.0732 | 1950 | 0.0098 | - |
1.1007 | 2000 | 0.002 | - |
1.1282 | 2050 | 0.0892 | - |
1.1558 | 2100 | 0.0557 | - |
1.1833 | 2150 | 0.001 | - |
1.2108 | 2200 | 0.0125 | - |
1.2383 | 2250 | 0.0152 | - |
1.2658 | 2300 | 0.0202 | - |
1.2933 | 2350 | 0.0593 | - |
1.3209 | 2400 | 0.007 | - |
1.3484 | 2450 | 0.014 | - |
1.3759 | 2500 | 0.003 | - |
1.4034 | 2550 | 0.0012 | - |
1.4309 | 2600 | 0.0139 | - |
1.4584 | 2650 | 0.0149 | - |
1.4860 | 2700 | 0.002 | - |
1.5135 | 2750 | 0.009 | - |
1.5410 | 2800 | 0.0066 | - |
1.5685 | 2850 | 0.0173 | - |
1.5960 | 2900 | 0.0052 | - |
1.6236 | 2950 | 0.0039 | - |
1.6511 | 3000 | 0.0042 | - |
1.6786 | 3050 | 0.0339 | - |
1.7061 | 3100 | 0.001 | - |
1.7336 | 3150 | 0.0005 | - |
1.7611 | 3200 | 0.0049 | - |
1.7887 | 3250 | 0.01 | - |
1.8162 | 3300 | 0.0815 | - |
1.8437 | 3350 | 0.0227 | - |
1.8712 | 3400 | 0.005 | - |
1.8987 | 3450 | 0.0053 | - |
1.9263 | 3500 | 0.0152 | - |
1.9538 | 3550 | 0.0155 | - |
1.9813 | 3600 | 0.0182 | - |
2.0 | 3634 | - | 0.2266 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- SetFit: 1.0.1
- Sentence Transformers: 2.2.2
- Transformers: 4.35.2
- PyTorch: 2.1.0+cu121
- Datasets: 2.16.1
- Tokenizers: 0.15.0
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
- Downloads last month
- 8
Inference API (serverless) has been turned off for this model.