Edit model card

SetFit with sentence-transformers/paraphrase-mpnet-base-v2

This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/paraphrase-mpnet-base-v2 as the Sentence Transformer embedding model. A OneVsRestClassifier instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Evaluation

Metrics

Label Accuracy
all 0.5849

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("anismahmahi/G2-multilabel-setfit-model")
# Run inference
preds = model("It was a jihad training camp.
")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 1 26.6518 129

Training Hyperparameters

  • batch_size: (16, 16)
  • num_epochs: (2, 2)
  • max_steps: -1
  • sampling_strategy: oversampling
  • num_iterations: 10
  • body_learning_rate: (2e-05, 1e-05)
  • head_learning_rate: 0.01
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: True

Training Results

Epoch Step Training Loss Validation Loss
0.0006 1 0.3905 -
0.0275 50 0.2239 -
0.0550 100 0.2359 -
0.0826 150 0.2443 -
0.1101 200 0.2495 -
0.1376 250 0.2498 -
0.1651 300 0.116 -
0.1926 350 0.1672 -
0.2201 400 0.1281 -
0.2477 450 0.139 -
0.2752 500 0.0615 -
0.3027 550 0.0972 -
0.3302 600 0.0851 -
0.3577 650 0.1769 -
0.3853 700 0.1673 -
0.4128 750 0.0615 -
0.4403 800 0.1232 -
0.4678 850 0.0094 -
0.4953 900 0.0135 -
0.5228 950 0.0107 -
0.5504 1000 0.1137 -
0.5779 1050 0.0173 -
0.6054 1100 0.0573 -
0.6329 1150 0.0115 -
0.6604 1200 0.0374 -
0.6879 1250 0.0231 -
0.7155 1300 0.0392 -
0.7430 1350 0.0754 -
0.7705 1400 0.007 -
0.7980 1450 0.0138 -
0.8255 1500 0.0569 -
0.8531 1550 0.0971 -
0.8806 1600 0.1052 -
0.9081 1650 0.0084 -
0.9356 1700 0.0859 -
0.9631 1750 0.0081 -
0.9906 1800 0.0362 -
1.0 1817 - 0.2354
1.0182 1850 0.0429 -
1.0457 1900 0.056 -
1.0732 1950 0.0098 -
1.1007 2000 0.002 -
1.1282 2050 0.0892 -
1.1558 2100 0.0557 -
1.1833 2150 0.001 -
1.2108 2200 0.0125 -
1.2383 2250 0.0152 -
1.2658 2300 0.0202 -
1.2933 2350 0.0593 -
1.3209 2400 0.007 -
1.3484 2450 0.014 -
1.3759 2500 0.003 -
1.4034 2550 0.0012 -
1.4309 2600 0.0139 -
1.4584 2650 0.0149 -
1.4860 2700 0.002 -
1.5135 2750 0.009 -
1.5410 2800 0.0066 -
1.5685 2850 0.0173 -
1.5960 2900 0.0052 -
1.6236 2950 0.0039 -
1.6511 3000 0.0042 -
1.6786 3050 0.0339 -
1.7061 3100 0.001 -
1.7336 3150 0.0005 -
1.7611 3200 0.0049 -
1.7887 3250 0.01 -
1.8162 3300 0.0815 -
1.8437 3350 0.0227 -
1.8712 3400 0.005 -
1.8987 3450 0.0053 -
1.9263 3500 0.0152 -
1.9538 3550 0.0155 -
1.9813 3600 0.0182 -
2.0 3634 - 0.2266
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.10.12
  • SetFit: 1.0.1
  • Sentence Transformers: 2.2.2
  • Transformers: 4.35.2
  • PyTorch: 2.1.0+cu121
  • Datasets: 2.16.1
  • Tokenizers: 0.15.0

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
Downloads last month
8
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Examples
Inference API (serverless) has been turned off for this model.

Model tree for anismahmahi/G2-multilabel-setfit-model

Finetuned
(247)
this model

Evaluation results