This repo contains EXL2 quants of the model. If you need the original weights, please find them here.

Base repo only contains the measurement file, see revisions for your quant of choice.

image/png

This is the seventh (Lucky!) in a series of models designed to replicate the prose quality of the Claude 3 models, specifically Sonnet and Opus. This model is fine-tuned on top of Qwen-2 72B Instruct.

Prompting

Model has been Instruct tuned with the ChatML formatting. A typical input would look like this:

"""<|im_start|>user
Hi there!<|im_end|>
<|im_start|>assistant
Nice to meet you!<|im_end|>
<|im_start|>user
Can I ask a question?<|im_end|>
<|im_start|>assistant
"""

Credits

This model has been a team effort, and the credits goes to all members of Anthracite.

Training

The training was done for 2 epochs. We used 8x AMD Instinct™ MI300X Accelerators for the full-parameter fine-tuning of the model.

We also trained with a weight decay of 0.01 to help further stabilize the loss trajectory and mitigate catastrophic forgetting, and utilize a peak learning rate of 4e-6 to prevent the 2nd epoch loss from dropping too significantly (as it is a strong indicator of overfitting). image/png

Sample Packing was done for 16k tokens rather than the 8k tokens used in our previous runs.

Built with Axolotl

Safety

...

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Examples
Unable to determine this model's library. Check the docs .

Collection including anthracite-org/magnum-v2-72b-exl2