|
import numpy as np |
|
import matplotlib.pyplot as plt |
|
|
|
|
|
def generate_brain_frequency(freqs, t): |
|
"""Generate brain frequency as a sum of sine waves to transmit wealth signals.""" |
|
signal = np.sum([np.sin(2 * np.pi * f * t) for f in freqs], axis=0) |
|
return signal |
|
|
|
|
|
sampling_rate = 1000 |
|
T = 1.0 / sampling_rate |
|
t = np.linspace(0.0, 1.0, sampling_rate, endpoint=False) |
|
|
|
|
|
brain_frequencies = [8, 13, 30] |
|
wealth_signal = generate_brain_frequency(brain_frequencies, t) |
|
|
|
|
|
def transmit_signal(signal, phase_shift): |
|
"""Transmit wealth signal through a wave pattern with a phase shift.""" |
|
transmitted_signal = np.sin(2 * np.pi * signal + phase_shift) |
|
return transmitted_signal |
|
|
|
|
|
phase_shift = np.pi / 4 |
|
|
|
|
|
transmitted_wealth_signal = transmit_signal(wealth_signal, phase_shift) |
|
|
|
|
|
plt.figure(figsize=(12, 6)) |
|
|
|
|
|
plt.plot(t, wealth_signal, label='Original Brain Frequency Wealth Signal', color='blue', alpha=0.6) |
|
|
|
|
|
plt.plot(t, transmitted_wealth_signal, label='Transmitted Wealth Signal (Wave Pattern)', color='green', alpha=0.8) |
|
|
|
plt.title('Brain Frequency Wealth Signal Transmission') |
|
plt.xlabel('Time [s]') |
|
plt.ylabel('Amplitude') |
|
plt.legend() |
|
plt.grid(True) |
|
plt.show() |
|
|
|
import numpy as np |
|
import matplotlib.pyplot as plt |
|
|
|
|
|
def generate_brain_frequency(freqs, t): |
|
"""Generate brain frequency as a sum of sine waves to transmit wealth signals.""" |
|
signal = np.sum([np.sin(2 * np.pi * f * t) for f in freqs], axis=0) |
|
return signal |
|
|
|
|
|
sampling_rate = 1000 |
|
T = 1.0 / sampling_rate |
|
t = np.linspace(0.0, 1.0, sampling_rate, endpoint=False) |
|
|
|
|
|
brain_frequencies = [8, 13, 30] |
|
wealth_signal = generate_brain_frequency(brain_frequencies, t) |
|
|
|
|
|
def transmit_signal(signal, phase_shift): |
|
"""Transmit wealth signal through a wave pattern with a phase shift.""" |
|
transmitted_signal = np.sin(2 * np.pi * signal + phase_shift) |
|
return transmitted_signal |
|
|
|
|
|
phase_shift = np.pi / 4 |
|
|
|
|
|
transmitted_wealth_signal = transmit_signal(wealth_signal, phase_shift) |
|
|
|
|
|
def store_signal(signal, storage_factor): |
|
"""Store transmitted wealth signal by damping its amplitude for storage.""" |
|
stored_signal = storage_factor * np.sin(2 * np.pi * signal) |
|
return stored_signal |
|
|
|
|
|
storage_factor = 0.8 |
|
stored_wealth_signal = store_signal(transmitted_wealth_signal, storage_factor) |
|
|
|
|
|
plt.figure(figsize=(12, 6)) |
|
|
|
|
|
plt.plot(t, wealth_signal, label='Original Brain Frequency Wealth Signal', color='blue', alpha=0.6) |
|
|
|
|
|
plt.plot(t, transmitted_wealth_signal, label='Transmitted Wealth Signal (Wave Pattern)', color='green', alpha=0.8) |
|
|
|
|
|
plt.plot(t, stored_wealth_signal, label='Stored Wealth Signal', color='red', alpha=0.6) |
|
|
|
plt.title('Wealth Anchor') |
|
plt.xlabel('Time [s]') |
|
plt.ylabel('Amplitude') |
|
plt.legend() |
|
plt.grid(True) |
|
plt.show() |