anuragshas's picture
Update README.md
d97a008
metadata
language:
  - mr
license: apache-2.0
tags:
  - automatic-speech-recognition
  - mozilla-foundation/common_voice_9_0
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_9_0
metrics:
  - wer
model-index:
  - name: XLS-R-300M - Marathi
    results:
      - task:
          type: automatic-speech-recognition
          name: Speech Recognition
        dataset:
          type: mozilla-foundation/common_voice_9_0
          name: Common Voice 9
          args: mr
        metrics:
          - type: wer
            value: 23.841
            name: Test WER
          - name: Test CER
            type: cer
            value: 5.522

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the MOZILLA-FOUNDATION/COMMON_VOICE_9_0 - MR dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3642
  • Wer: 0.4190
  • Cer: 0.0946

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 7.5e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • training_steps: 6124
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
3.5184 12.9 400 3.4210 1.0 1.0
2.3797 25.81 800 1.1068 0.8389 0.2584
1.5022 38.71 1200 0.5278 0.6280 0.1517
1.3181 51.61 1600 0.4254 0.5587 0.1297
1.2037 64.52 2000 0.3836 0.5143 0.1176
1.1245 77.42 2400 0.3643 0.4871 0.1111
1.0582 90.32 2800 0.3562 0.4676 0.1062
1.0027 103.23 3200 0.3530 0.4625 0.1058
0.9382 116.13 3600 0.3388 0.4442 0.1002
0.8915 129.03 4000 0.3430 0.4427 0.1000
0.853 141.94 4400 0.3536 0.4375 0.1000
0.8127 154.84 4800 0.3511 0.4344 0.0986
0.7861 167.74 5200 0.3595 0.4372 0.0993
0.7619 180.65 5600 0.3628 0.4316 0.0985
0.7537 193.55 6000 0.3633 0.4174 0.0943

Framework versions

  • Transformers 4.19.0.dev0
  • Pytorch 1.11.0+cu102
  • Datasets 2.1.1.dev0
  • Tokenizers 0.12.1