Edit model card

Wav2Vec2-Large-XLSR-53-Ukrainian

Fine-tuned facebook/wav2vec2-large-xlsr-53 on Ukrainian using the Common Voice and sample of M-AILABS Ukrainian Corpus datasets.

When using this model, make sure that your speech input is sampled at 16kHz.

Usage

The model can be used directly (without a language model) as follows:


import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor

test_dataset = load_dataset("common_voice", "uk", split="test[:2%]")

processor = Wav2Vec2Processor.from_pretrained("arampacha/wav2vec2-large-xlsr-ukrainian")
model = Wav2Vec2ForCTC.from_pretrained("arampacha/wav2vec2-large-xlsr-ukrainian")

# Preprocessing the datasets.
# We need to read the aduio files as arrays

def speech_file_to_array_fn(batch):
    speech_array, sampling_rate = torchaudio.load(batch["path"])
    batch["speech"] = torchaudio.transforms.Resample(sampling_rate, 16_000)(speech_array).squeeze().numpy()
    return batch

test_dataset = test_dataset.map(speech_file_to_array_fn)

inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)

with torch.no_grad():
    logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits

predicted_ids = torch.argmax(logits, dim=-1)

print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])

Evaluation

The model can be evaluated as follows on the Ukrainian test data of Common Voice.

import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re

test_dataset = load_dataset("common_voice", "uk", split="test")

wer = load_metric("wer")
processor = Wav2Vec2Processor.from_pretrained("arampacha/wav2vec2-large-xlsr-ukrainian")
model = Wav2Vec2ForCTC.from_pretrained("arampacha/wav2vec2-large-xlsr-ukrainian")
model.to("cuda")

chars_to_ignore = [",", "?", ".", "!", "-", ";", ":", '""', "%", "'", '"', "�", '«', '»', '—', '…', '(', ')', '*', '”', '“']
chars_to_ignore_regex = f'[{"".join(chars_to_ignore)}]'
resampler = torchaudio.transforms.Resample(48_000, 16_000)

# Preprocessing the datasets.
# We need to read the aduio files as arrays and normalize charecters
def speech_file_to_array_fn(batch):
    batch["sentence"] = re.sub(re.compile("['`]"), '’', batch['sentence'])
    batch["sentence"] = re.sub(re.compile(chars_to_ignore_regex), '', batch["sentence"]).lower().strip()
    batch["sentence"] = re.sub(re.compile('i'), 'і', batch['sentence'])
    batch["sentence"] = re.sub(re.compile('o'), 'о', batch['sentence'])
    batch["sentence"] = re.sub(re.compile('a'), 'а', batch['sentence'])
    batch["sentence"] = re.sub(re.compile('ы'), 'и', batch['sentence'])
    batch["sentence"] = re.sub(re.compile("–"), '', batch['sentence'])
    batch['sentence'] = re.sub('  ', ' ', batch['sentence'])
    speech_array, sampling_rate = torchaudio.load(batch["path"])
    batch["speech"] = torchaudio.transforms.Resample(sampling_rate, 16_000)(speech_array).squeeze().numpy()
    return batch

test_dataset = test_dataset.map(speech_file_to_array_fn)

def evaluate(batch):
    inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
    with torch.no_grad():
        logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits

    pred_ids = torch.argmax(logits, dim=-1)
    batch["pred_strings"] = processor.batch_decode(pred_ids)
    return batch

result = test_dataset.map(evaluate, batched=True, batch_size=8)

print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))

Test Result: 29.89

Training

The Common Voice train, validation and the M-AILABS Ukrainian corpus.

The script used for training will be available here soon.

Downloads last month
15
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Evaluation results