aravindhv10
commited on
Commit
·
0010613
1
Parent(s):
0be46a0
Routine updates
Browse files- MVANet_Inference/README.org +2179 -0
- main.org +7 -29
MVANet_Inference/README.org
ADDED
@@ -0,0 +1,2179 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
* COMMENT Sample
|
2 |
+
|
3 |
+
** Shell script to download
|
4 |
+
#+begin_src sh :shebang #!/bin/sh :results output :tangle ./download.sh
|
5 |
+
#+end_src
|
6 |
+
|
7 |
+
** MVANet_inference import
|
8 |
+
#+begin_src python :shebang #!/usr/bin/python3 :results output :tangle ./MVANet_inference.import.py
|
9 |
+
#+end_src
|
10 |
+
|
11 |
+
** MVANet_inference function
|
12 |
+
#+begin_src python :shebang #!/usr/bin/python3 :results output :tangle ./MVANet_inference.function.py
|
13 |
+
#+end_src
|
14 |
+
|
15 |
+
** MVANet_inference class
|
16 |
+
#+begin_src python :shebang #!/usr/bin/python3 :results output :tangle ./MVANet_inference.class.py
|
17 |
+
#+end_src
|
18 |
+
|
19 |
+
** MVANet_inference execute
|
20 |
+
#+begin_src python :shebang #!/usr/bin/python3 :results output :tangle ./MVANet_inference.execute.py
|
21 |
+
#+end_src
|
22 |
+
|
23 |
+
** MVANet_inference unify
|
24 |
+
#+begin_src sh :shebang #!/bin/sh :results output :tangle ./MVANet_inference.unify.sh
|
25 |
+
#+end_src
|
26 |
+
|
27 |
+
** MVANet_inference run
|
28 |
+
#+begin_src sh :shebang #!/bin/sh :results output :tangle ./MVANet_inference.run.sh
|
29 |
+
#+end_src
|
30 |
+
|
31 |
+
* Download the code:
|
32 |
+
|
33 |
+
** Function to download
|
34 |
+
#+begin_src sh :shebang #!/bin/sh :results output :tangle ./download.sh
|
35 |
+
get_repo(){
|
36 |
+
DIR_REPO="${HOME}/GITHUB/$('echo' "${1}" | 'sed' 's/^git@github.com://g ; s@^https://github.com/@@g ; s@.git$@@g' )"
|
37 |
+
DIR_BASE="$('dirname' '--' "${DIR_REPO}")"
|
38 |
+
mkdir -pv -- "${DIR_BASE}"
|
39 |
+
cd "${DIR_BASE}"
|
40 |
+
git clone "${1}"
|
41 |
+
cd "${DIR_REPO}"
|
42 |
+
git pull
|
43 |
+
git submodule update --recursive --init
|
44 |
+
}
|
45 |
+
#+end_src
|
46 |
+
|
47 |
+
** Download
|
48 |
+
#+begin_src sh :shebang #!/bin/sh :results output :tangle ./download.sh
|
49 |
+
get_repo 'https://github.com/qianyu-dlut/MVANet.git'
|
50 |
+
#+end_src
|
51 |
+
|
52 |
+
* Dependencies
|
53 |
+
pip3 install mmdet==2.23.0
|
54 |
+
pip3 install mmcv==1.4.8
|
55 |
+
pip3 install ttach
|
56 |
+
|
57 |
+
* Python inference
|
58 |
+
|
59 |
+
** Important configs
|
60 |
+
#+begin_src python :shebang #!/usr/bin/python3 :results output :tangle ./MVANet_inference.import.py
|
61 |
+
import os
|
62 |
+
import sys
|
63 |
+
|
64 |
+
HOME_DIR = os.environ.get('HOME', '/root')
|
65 |
+
MVANET_SOURCE_DIR = HOME_DIR + '/GITHUB/qianyu-dlut/MVANet'
|
66 |
+
finetuned_MVANet_model_path = MVANET_SOURCE_DIR + '/model/Model_80.pth'
|
67 |
+
pretrained_SwinB_model_path = MVANET_SOURCE_DIR + '/model/swin_base_patch4_window12_384_22kto1k.pth'
|
68 |
+
#+end_src
|
69 |
+
|
70 |
+
** MVANet_inference import
|
71 |
+
#+begin_src python :shebang #!/usr/bin/python3 :results output :tangle ./MVANet_inference.import.py
|
72 |
+
import math
|
73 |
+
import numpy as np
|
74 |
+
from PIL import Image
|
75 |
+
import time
|
76 |
+
# import ttach as tta
|
77 |
+
import cv2
|
78 |
+
|
79 |
+
import torch
|
80 |
+
import torch.nn as nn
|
81 |
+
import torch.nn.functional as F
|
82 |
+
import torch.utils.checkpoint as checkpoint
|
83 |
+
from torch.autograd import Variable
|
84 |
+
from torch import nn
|
85 |
+
from torchvision import transforms
|
86 |
+
|
87 |
+
from einops import rearrange
|
88 |
+
|
89 |
+
from timm.models import load_checkpoint
|
90 |
+
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
|
91 |
+
#+end_src
|
92 |
+
|
93 |
+
** Load image using CV
|
94 |
+
#+begin_src python :shebang #!/usr/bin/python3 :results output :tangle ./MVANet_inference.function.py
|
95 |
+
def load_image(input_image_path):
|
96 |
+
img = cv2.imread(input_image_path, cv2.IMREAD_COLOR)
|
97 |
+
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
98 |
+
return img
|
99 |
+
|
100 |
+
|
101 |
+
def load_image_torch(input_image_path):
|
102 |
+
img = cv2.imread(input_image_path, cv2.IMREAD_COLOR)
|
103 |
+
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
104 |
+
img = torch.from_numpy(img)
|
105 |
+
img = img.to(dtype=torch.float32)
|
106 |
+
img /= 255.0
|
107 |
+
img = img.unsqueeze(0)
|
108 |
+
return img
|
109 |
+
|
110 |
+
|
111 |
+
def save_mask(output_image_path, mask):
|
112 |
+
cv2.imwrite(output_image_path, mask)
|
113 |
+
|
114 |
+
|
115 |
+
def save_mask_torch(output_image_path, mask):
|
116 |
+
mask = mask.detach().cpu()
|
117 |
+
mask *= 255.0
|
118 |
+
mask = mask.clamp(0, 255)
|
119 |
+
print(mask.shape)
|
120 |
+
mask = mask.squeeze(0)
|
121 |
+
mask = mask.to(dtype=torch.uint8)
|
122 |
+
print(mask.shape)
|
123 |
+
mask = mask.numpy()
|
124 |
+
print(mask.shape)
|
125 |
+
cv2.imwrite(output_image_path, mask)
|
126 |
+
#+end_src
|
127 |
+
|
128 |
+
** Device configs
|
129 |
+
#+begin_src python :shebang #!/usr/bin/python3 :results output :tangle ./MVANet_inference.execute.py
|
130 |
+
torch_device = 'cuda'
|
131 |
+
torch_dtype = torch.float16
|
132 |
+
#+end_src
|
133 |
+
to(dtype=torch_dtype, device=torch_device)
|
134 |
+
|
135 |
+
** MVANet_inference function
|
136 |
+
#+begin_src python :shebang #!/usr/bin/python3 :results output :tangle ./MVANet_inference.function.py
|
137 |
+
def check_mkdir(dir_name):
|
138 |
+
if not os.path.isdir(dir_name):
|
139 |
+
os.makedirs(dir_name)
|
140 |
+
|
141 |
+
|
142 |
+
def SwinT(pretrained=True):
|
143 |
+
model = SwinTransformer(embed_dim=96,
|
144 |
+
depths=[2, 2, 6, 2],
|
145 |
+
num_heads=[3, 6, 12, 24],
|
146 |
+
window_size=7)
|
147 |
+
if pretrained is True:
|
148 |
+
model.load_state_dict(torch.load(
|
149 |
+
'data/backbone_ckpt/swin_tiny_patch4_window7_224.pth',
|
150 |
+
map_location='cpu')['model'],
|
151 |
+
strict=False)
|
152 |
+
|
153 |
+
return model
|
154 |
+
|
155 |
+
|
156 |
+
def SwinS(pretrained=True):
|
157 |
+
model = SwinTransformer(embed_dim=96,
|
158 |
+
depths=[2, 2, 18, 2],
|
159 |
+
num_heads=[3, 6, 12, 24],
|
160 |
+
window_size=7)
|
161 |
+
if pretrained is True:
|
162 |
+
model.load_state_dict(torch.load(
|
163 |
+
'data/backbone_ckpt/swin_small_patch4_window7_224.pth',
|
164 |
+
map_location='cpu')['model'],
|
165 |
+
strict=False)
|
166 |
+
|
167 |
+
return model
|
168 |
+
|
169 |
+
|
170 |
+
def SwinB(pretrained=True):
|
171 |
+
model = SwinTransformer(embed_dim=128,
|
172 |
+
depths=[2, 2, 18, 2],
|
173 |
+
num_heads=[4, 8, 16, 32],
|
174 |
+
window_size=12)
|
175 |
+
if pretrained is True:
|
176 |
+
import os
|
177 |
+
model.load_state_dict(torch.load(pretrained_SwinB_model_path,
|
178 |
+
map_location='cpu')['model'],
|
179 |
+
strict=False)
|
180 |
+
return model
|
181 |
+
|
182 |
+
|
183 |
+
def SwinL(pretrained=True):
|
184 |
+
model = SwinTransformer(embed_dim=192,
|
185 |
+
depths=[2, 2, 18, 2],
|
186 |
+
num_heads=[6, 12, 24, 48],
|
187 |
+
window_size=12)
|
188 |
+
if pretrained is True:
|
189 |
+
model.load_state_dict(torch.load(
|
190 |
+
'data/backbone_ckpt/swin_large_patch4_window12_384_22kto1k.pth',
|
191 |
+
map_location='cpu')['model'],
|
192 |
+
strict=False)
|
193 |
+
|
194 |
+
return model
|
195 |
+
|
196 |
+
|
197 |
+
def get_activation_fn(activation):
|
198 |
+
"""Return an activation function given a string"""
|
199 |
+
if activation == "relu":
|
200 |
+
return F.relu
|
201 |
+
if activation == "gelu":
|
202 |
+
return F.gelu
|
203 |
+
if activation == "glu":
|
204 |
+
return F.glu
|
205 |
+
raise RuntimeError(F"activation should be relu/gelu, not {activation}.")
|
206 |
+
|
207 |
+
|
208 |
+
def make_cbr(in_dim, out_dim):
|
209 |
+
return nn.Sequential(nn.Conv2d(in_dim, out_dim, kernel_size=3, padding=1),
|
210 |
+
nn.BatchNorm2d(out_dim), nn.PReLU())
|
211 |
+
|
212 |
+
|
213 |
+
def make_cbg(in_dim, out_dim):
|
214 |
+
return nn.Sequential(nn.Conv2d(in_dim, out_dim, kernel_size=3, padding=1),
|
215 |
+
nn.BatchNorm2d(out_dim), nn.GELU())
|
216 |
+
|
217 |
+
|
218 |
+
def rescale_to(x, scale_factor: float = 2, interpolation='nearest'):
|
219 |
+
return F.interpolate(x, scale_factor=scale_factor, mode=interpolation)
|
220 |
+
|
221 |
+
|
222 |
+
def resize_as(x, y, interpolation='bilinear'):
|
223 |
+
return F.interpolate(x, size=y.shape[-2:], mode=interpolation)
|
224 |
+
|
225 |
+
|
226 |
+
def image2patches(x):
|
227 |
+
"""b c (hg h) (wg w) -> (hg wg b) c h w"""
|
228 |
+
x = rearrange(x, 'b c (hg h) (wg w) -> (hg wg b) c h w', hg=2, wg=2)
|
229 |
+
return x
|
230 |
+
|
231 |
+
|
232 |
+
def patches2image(x):
|
233 |
+
"""(hg wg b) c h w -> b c (hg h) (wg w)"""
|
234 |
+
x = rearrange(x, '(hg wg b) c h w -> b c (hg h) (wg w)', hg=2, wg=2)
|
235 |
+
return x
|
236 |
+
|
237 |
+
|
238 |
+
def window_partition(x, window_size):
|
239 |
+
"""
|
240 |
+
Args:
|
241 |
+
x: (B, H, W, C)
|
242 |
+
window_size (int): window size
|
243 |
+
|
244 |
+
Returns:
|
245 |
+
windows: (num_windows*B, window_size, window_size, C)
|
246 |
+
"""
|
247 |
+
B, H, W, C = x.shape
|
248 |
+
x = x.view(B, H // window_size, window_size, W // window_size, window_size,
|
249 |
+
C)
|
250 |
+
windows = x.permute(0, 1, 3, 2, 4,
|
251 |
+
5).contiguous().view(-1, window_size, window_size, C)
|
252 |
+
return windows
|
253 |
+
|
254 |
+
|
255 |
+
def window_reverse(windows, window_size, H, W):
|
256 |
+
"""
|
257 |
+
Args:
|
258 |
+
windows: (num_windows*B, window_size, window_size, C)
|
259 |
+
window_size (int): Window size
|
260 |
+
H (int): Height of image
|
261 |
+
W (int): Width of image
|
262 |
+
|
263 |
+
Returns:
|
264 |
+
x: (B, H, W, C)
|
265 |
+
"""
|
266 |
+
B = int(windows.shape[0] / (H * W / window_size / window_size))
|
267 |
+
x = windows.view(B, H // window_size, W // window_size, window_size,
|
268 |
+
window_size, -1)
|
269 |
+
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
|
270 |
+
return x
|
271 |
+
#+end_src
|
272 |
+
|
273 |
+
** MVANet_inference class
|
274 |
+
#+begin_src python :shebang #!/usr/bin/python3 :results output :tangle ./MVANet_inference.class.py
|
275 |
+
class Mlp(nn.Module):
|
276 |
+
""" Multilayer perceptron."""
|
277 |
+
|
278 |
+
def __init__(self,
|
279 |
+
in_features,
|
280 |
+
hidden_features=None,
|
281 |
+
out_features=None,
|
282 |
+
act_layer=nn.GELU,
|
283 |
+
drop=0.):
|
284 |
+
super().__init__()
|
285 |
+
out_features = out_features or in_features
|
286 |
+
hidden_features = hidden_features or in_features
|
287 |
+
self.fc1 = nn.Linear(in_features, hidden_features)
|
288 |
+
self.act = act_layer()
|
289 |
+
self.fc2 = nn.Linear(hidden_features, out_features)
|
290 |
+
self.drop = nn.Dropout(drop)
|
291 |
+
|
292 |
+
def forward(self, x):
|
293 |
+
x = self.fc1(x)
|
294 |
+
x = self.act(x)
|
295 |
+
x = self.drop(x)
|
296 |
+
x = self.fc2(x)
|
297 |
+
x = self.drop(x)
|
298 |
+
return x
|
299 |
+
|
300 |
+
|
301 |
+
class WindowAttention(nn.Module):
|
302 |
+
""" Window based multi-head self attention (W-MSA) module with relative position bias.
|
303 |
+
It supports both of shifted and non-shifted window.
|
304 |
+
|
305 |
+
Args:
|
306 |
+
dim (int): Number of input channels.
|
307 |
+
window_size (tuple[int]): The height and width of the window.
|
308 |
+
num_heads (int): Number of attention heads.
|
309 |
+
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
|
310 |
+
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set
|
311 |
+
attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
|
312 |
+
proj_drop (float, optional): Dropout ratio of output. Default: 0.0
|
313 |
+
"""
|
314 |
+
|
315 |
+
def __init__(self,
|
316 |
+
dim,
|
317 |
+
window_size,
|
318 |
+
num_heads,
|
319 |
+
qkv_bias=True,
|
320 |
+
qk_scale=None,
|
321 |
+
attn_drop=0.,
|
322 |
+
proj_drop=0.):
|
323 |
+
|
324 |
+
super().__init__()
|
325 |
+
self.dim = dim
|
326 |
+
self.window_size = window_size # Wh, Ww
|
327 |
+
self.num_heads = num_heads
|
328 |
+
head_dim = dim // num_heads
|
329 |
+
self.scale = qk_scale or head_dim**-0.5
|
330 |
+
|
331 |
+
# define a parameter table of relative position bias
|
332 |
+
self.relative_position_bias_table = nn.Parameter(
|
333 |
+
torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1),
|
334 |
+
num_heads)) # 2*Wh-1 * 2*Ww-1, nH
|
335 |
+
|
336 |
+
# get pair-wise relative position index for each token inside the window
|
337 |
+
coords_h = torch.arange(self.window_size[0])
|
338 |
+
coords_w = torch.arange(self.window_size[1])
|
339 |
+
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
|
340 |
+
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
|
341 |
+
relative_coords = coords_flatten[:, :,
|
342 |
+
None] - coords_flatten[:,
|
343 |
+
None, :] # 2, Wh*Ww, Wh*Ww
|
344 |
+
relative_coords = relative_coords.permute(
|
345 |
+
1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
|
346 |
+
relative_coords[:, :,
|
347 |
+
0] += self.window_size[0] - 1 # shift to start from 0
|
348 |
+
relative_coords[:, :, 1] += self.window_size[1] - 1
|
349 |
+
relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
|
350 |
+
relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
|
351 |
+
self.register_buffer("relative_position_index",
|
352 |
+
relative_position_index)
|
353 |
+
|
354 |
+
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
355 |
+
self.attn_drop = nn.Dropout(attn_drop)
|
356 |
+
self.proj = nn.Linear(dim, dim)
|
357 |
+
self.proj_drop = nn.Dropout(proj_drop)
|
358 |
+
|
359 |
+
trunc_normal_(self.relative_position_bias_table, std=.02)
|
360 |
+
self.softmax = nn.Softmax(dim=-1)
|
361 |
+
|
362 |
+
def forward(self, x, mask=None):
|
363 |
+
""" Forward function.
|
364 |
+
|
365 |
+
Args:
|
366 |
+
x: input features with shape of (num_windows*B, N, C)
|
367 |
+
mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
|
368 |
+
"""
|
369 |
+
x = x.to(dtype=torch_dtype, device=torch_device)
|
370 |
+
B_, N, C = x.shape
|
371 |
+
qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads,
|
372 |
+
C // self.num_heads).permute(2, 0, 3, 1, 4)
|
373 |
+
q, k, v = qkv[0], qkv[1], qkv[
|
374 |
+
2] # make torchscript happy (cannot use tensor as tuple)
|
375 |
+
|
376 |
+
q = q * self.scale
|
377 |
+
attn = (q @ k.transpose(-2, -1))
|
378 |
+
|
379 |
+
relative_position_bias = self.relative_position_bias_table[
|
380 |
+
self.relative_position_index.view(-1)].view(
|
381 |
+
self.window_size[0] * self.window_size[1],
|
382 |
+
self.window_size[0] * self.window_size[1],
|
383 |
+
-1) # Wh*Ww,Wh*Ww,nH
|
384 |
+
relative_position_bias = relative_position_bias.permute(
|
385 |
+
2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
|
386 |
+
attn = attn + relative_position_bias.unsqueeze(0)
|
387 |
+
|
388 |
+
if mask is not None:
|
389 |
+
nW = mask.shape[0]
|
390 |
+
attn = attn.view(B_ // nW, nW, self.num_heads, N,
|
391 |
+
N) + mask.unsqueeze(1).unsqueeze(0)
|
392 |
+
attn = attn.view(-1, self.num_heads, N, N)
|
393 |
+
attn = self.softmax(attn)
|
394 |
+
else:
|
395 |
+
attn = self.softmax(attn)
|
396 |
+
|
397 |
+
attn = self.attn_drop(attn)
|
398 |
+
attn = attn.to(dtype=torch_dtype, device=torch_device)
|
399 |
+
v = v.to(dtype=torch_dtype, device=torch_device)
|
400 |
+
|
401 |
+
x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
|
402 |
+
x = self.proj(x)
|
403 |
+
x = self.proj_drop(x)
|
404 |
+
return x
|
405 |
+
|
406 |
+
|
407 |
+
class SwinTransformerBlock(nn.Module):
|
408 |
+
""" Swin Transformer Block.
|
409 |
+
|
410 |
+
Args:
|
411 |
+
dim (int): Number of input channels.
|
412 |
+
num_heads (int): Number of attention heads.
|
413 |
+
window_size (int): Window size.
|
414 |
+
shift_size (int): Shift size for SW-MSA.
|
415 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
|
416 |
+
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
|
417 |
+
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
|
418 |
+
drop (float, optional): Dropout rate. Default: 0.0
|
419 |
+
attn_drop (float, optional): Attention dropout rate. Default: 0.0
|
420 |
+
drop_path (float, optional): Stochastic depth rate. Default: 0.0
|
421 |
+
act_layer (nn.Module, optional): Activation layer. Default: nn.GELU
|
422 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
423 |
+
"""
|
424 |
+
|
425 |
+
def __init__(self,
|
426 |
+
dim,
|
427 |
+
num_heads,
|
428 |
+
window_size=7,
|
429 |
+
shift_size=0,
|
430 |
+
mlp_ratio=4.,
|
431 |
+
qkv_bias=True,
|
432 |
+
qk_scale=None,
|
433 |
+
drop=0.,
|
434 |
+
attn_drop=0.,
|
435 |
+
drop_path=0.,
|
436 |
+
act_layer=nn.GELU,
|
437 |
+
norm_layer=nn.LayerNorm):
|
438 |
+
super().__init__()
|
439 |
+
self.dim = dim
|
440 |
+
self.num_heads = num_heads
|
441 |
+
self.window_size = window_size
|
442 |
+
self.shift_size = shift_size
|
443 |
+
self.mlp_ratio = mlp_ratio
|
444 |
+
assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size"
|
445 |
+
|
446 |
+
self.norm1 = norm_layer(dim)
|
447 |
+
self.attn = WindowAttention(dim,
|
448 |
+
window_size=to_2tuple(self.window_size),
|
449 |
+
num_heads=num_heads,
|
450 |
+
qkv_bias=qkv_bias,
|
451 |
+
qk_scale=qk_scale,
|
452 |
+
attn_drop=attn_drop,
|
453 |
+
proj_drop=drop)
|
454 |
+
|
455 |
+
self.drop_path = DropPath(
|
456 |
+
drop_path) if drop_path > 0. else nn.Identity()
|
457 |
+
self.norm2 = norm_layer(dim)
|
458 |
+
mlp_hidden_dim = int(dim * mlp_ratio)
|
459 |
+
self.mlp = Mlp(in_features=dim,
|
460 |
+
hidden_features=mlp_hidden_dim,
|
461 |
+
act_layer=act_layer,
|
462 |
+
drop=drop)
|
463 |
+
|
464 |
+
self.H = None
|
465 |
+
self.W = None
|
466 |
+
|
467 |
+
def forward(self, x, mask_matrix):
|
468 |
+
""" Forward function.
|
469 |
+
|
470 |
+
Args:
|
471 |
+
x: Input feature, tensor size (B, H*W, C).
|
472 |
+
H, W: Spatial resolution of the input feature.
|
473 |
+
mask_matrix: Attention mask for cyclic shift.
|
474 |
+
"""
|
475 |
+
B, L, C = x.shape
|
476 |
+
H, W = self.H, self.W
|
477 |
+
assert L == H * W, "input feature has wrong size"
|
478 |
+
|
479 |
+
shortcut = x
|
480 |
+
x = self.norm1(x)
|
481 |
+
x = x.view(B, H, W, C)
|
482 |
+
|
483 |
+
# pad feature maps to multiples of window size
|
484 |
+
pad_l = pad_t = 0
|
485 |
+
pad_r = (self.window_size - W % self.window_size) % self.window_size
|
486 |
+
pad_b = (self.window_size - H % self.window_size) % self.window_size
|
487 |
+
x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b))
|
488 |
+
_, Hp, Wp, _ = x.shape
|
489 |
+
|
490 |
+
# cyclic shift
|
491 |
+
if self.shift_size > 0:
|
492 |
+
shifted_x = torch.roll(x,
|
493 |
+
shifts=(-self.shift_size, -self.shift_size),
|
494 |
+
dims=(1, 2))
|
495 |
+
attn_mask = mask_matrix
|
496 |
+
else:
|
497 |
+
shifted_x = x
|
498 |
+
attn_mask = None
|
499 |
+
|
500 |
+
# partition windows
|
501 |
+
x_windows = window_partition(
|
502 |
+
shifted_x, self.window_size) # nW*B, window_size, window_size, C
|
503 |
+
x_windows = x_windows.view(-1, self.window_size * self.window_size,
|
504 |
+
C) # nW*B, window_size*window_size, C
|
505 |
+
|
506 |
+
# W-MSA/SW-MSA
|
507 |
+
attn_windows = self.attn(
|
508 |
+
x_windows, mask=attn_mask) # nW*B, window_size*window_size, C
|
509 |
+
|
510 |
+
# merge windows
|
511 |
+
attn_windows = attn_windows.view(-1, self.window_size,
|
512 |
+
self.window_size, C)
|
513 |
+
shifted_x = window_reverse(attn_windows, self.window_size, Hp,
|
514 |
+
Wp) # B H' W' C
|
515 |
+
|
516 |
+
# reverse cyclic shift
|
517 |
+
if self.shift_size > 0:
|
518 |
+
x = torch.roll(shifted_x,
|
519 |
+
shifts=(self.shift_size, self.shift_size),
|
520 |
+
dims=(1, 2))
|
521 |
+
else:
|
522 |
+
x = shifted_x
|
523 |
+
|
524 |
+
if pad_r > 0 or pad_b > 0:
|
525 |
+
x = x[:, :H, :W, :].contiguous()
|
526 |
+
|
527 |
+
x = x.view(B, H * W, C)
|
528 |
+
|
529 |
+
# FFN
|
530 |
+
x = shortcut + self.drop_path(x)
|
531 |
+
x = x + self.drop_path(self.mlp(self.norm2(x)))
|
532 |
+
|
533 |
+
return x
|
534 |
+
|
535 |
+
|
536 |
+
class PatchMerging(nn.Module):
|
537 |
+
""" Patch Merging Layer
|
538 |
+
|
539 |
+
Args:
|
540 |
+
dim (int): Number of input channels.
|
541 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
542 |
+
"""
|
543 |
+
|
544 |
+
def __init__(self, dim, norm_layer=nn.LayerNorm):
|
545 |
+
super().__init__()
|
546 |
+
self.dim = dim
|
547 |
+
self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)
|
548 |
+
self.norm = norm_layer(4 * dim)
|
549 |
+
|
550 |
+
def forward(self, x, H, W):
|
551 |
+
""" Forward function.
|
552 |
+
|
553 |
+
Args:
|
554 |
+
x: Input feature, tensor size (B, H*W, C).
|
555 |
+
H, W: Spatial resolution of the input feature.
|
556 |
+
"""
|
557 |
+
B, L, C = x.shape
|
558 |
+
assert L == H * W, "input feature has wrong size"
|
559 |
+
|
560 |
+
x = x.view(B, H, W, C)
|
561 |
+
|
562 |
+
# padding
|
563 |
+
pad_input = (H % 2 == 1) or (W % 2 == 1)
|
564 |
+
if pad_input:
|
565 |
+
x = F.pad(x, (0, 0, 0, W % 2, 0, H % 2))
|
566 |
+
|
567 |
+
x0 = x[:, 0::2, 0::2, :] # B H/2 W/2 C
|
568 |
+
x1 = x[:, 1::2, 0::2, :] # B H/2 W/2 C
|
569 |
+
x2 = x[:, 0::2, 1::2, :] # B H/2 W/2 C
|
570 |
+
x3 = x[:, 1::2, 1::2, :] # B H/2 W/2 C
|
571 |
+
x = torch.cat([x0, x1, x2, x3], -1) # B H/2 W/2 4*C
|
572 |
+
x = x.view(B, -1, 4 * C) # B H/2*W/2 4*C
|
573 |
+
|
574 |
+
x = self.norm(x)
|
575 |
+
x = self.reduction(x)
|
576 |
+
|
577 |
+
return x
|
578 |
+
|
579 |
+
|
580 |
+
class BasicLayer(nn.Module):
|
581 |
+
""" A basic Swin Transformer layer for one stage.
|
582 |
+
|
583 |
+
Args:
|
584 |
+
dim (int): Number of feature channels
|
585 |
+
depth (int): Depths of this stage.
|
586 |
+
num_heads (int): Number of attention head.
|
587 |
+
window_size (int): Local window size. Default: 7.
|
588 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4.
|
589 |
+
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
|
590 |
+
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
|
591 |
+
drop (float, optional): Dropout rate. Default: 0.0
|
592 |
+
attn_drop (float, optional): Attention dropout rate. Default: 0.0
|
593 |
+
drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
|
594 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
595 |
+
downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
|
596 |
+
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
|
597 |
+
"""
|
598 |
+
|
599 |
+
def __init__(self,
|
600 |
+
dim,
|
601 |
+
depth,
|
602 |
+
num_heads,
|
603 |
+
window_size=7,
|
604 |
+
mlp_ratio=4.,
|
605 |
+
qkv_bias=True,
|
606 |
+
qk_scale=None,
|
607 |
+
drop=0.,
|
608 |
+
attn_drop=0.,
|
609 |
+
drop_path=0.,
|
610 |
+
norm_layer=nn.LayerNorm,
|
611 |
+
downsample=None,
|
612 |
+
use_checkpoint=False):
|
613 |
+
super().__init__()
|
614 |
+
self.window_size = window_size
|
615 |
+
self.shift_size = window_size // 2
|
616 |
+
self.depth = depth
|
617 |
+
self.use_checkpoint = use_checkpoint
|
618 |
+
|
619 |
+
# build blocks
|
620 |
+
self.blocks = nn.ModuleList([
|
621 |
+
SwinTransformerBlock(dim=dim,
|
622 |
+
num_heads=num_heads,
|
623 |
+
window_size=window_size,
|
624 |
+
shift_size=0 if
|
625 |
+
(i % 2 == 0) else window_size // 2,
|
626 |
+
mlp_ratio=mlp_ratio,
|
627 |
+
qkv_bias=qkv_bias,
|
628 |
+
qk_scale=qk_scale,
|
629 |
+
drop=drop,
|
630 |
+
attn_drop=attn_drop,
|
631 |
+
drop_path=drop_path[i] if isinstance(
|
632 |
+
drop_path, list) else drop_path,
|
633 |
+
norm_layer=norm_layer) for i in range(depth)
|
634 |
+
])
|
635 |
+
|
636 |
+
# patch merging layer
|
637 |
+
if downsample is not None:
|
638 |
+
self.downsample = downsample(dim=dim, norm_layer=norm_layer)
|
639 |
+
else:
|
640 |
+
self.downsample = None
|
641 |
+
|
642 |
+
def forward(self, x, H, W):
|
643 |
+
""" Forward function.
|
644 |
+
|
645 |
+
Args:
|
646 |
+
x: Input feature, tensor size (B, H*W, C).
|
647 |
+
H, W: Spatial resolution of the input feature.
|
648 |
+
"""
|
649 |
+
|
650 |
+
# calculate attention mask for SW-MSA
|
651 |
+
Hp = int(np.ceil(H / self.window_size)) * self.window_size
|
652 |
+
Wp = int(np.ceil(W / self.window_size)) * self.window_size
|
653 |
+
img_mask = torch.zeros((1, Hp, Wp, 1), device=x.device) # 1 Hp Wp 1
|
654 |
+
h_slices = (slice(0, -self.window_size),
|
655 |
+
slice(-self.window_size,
|
656 |
+
-self.shift_size), slice(-self.shift_size, None))
|
657 |
+
w_slices = (slice(0, -self.window_size),
|
658 |
+
slice(-self.window_size,
|
659 |
+
-self.shift_size), slice(-self.shift_size, None))
|
660 |
+
cnt = 0
|
661 |
+
for h in h_slices:
|
662 |
+
for w in w_slices:
|
663 |
+
img_mask[:, h, w, :] = cnt
|
664 |
+
cnt += 1
|
665 |
+
|
666 |
+
mask_windows = window_partition(
|
667 |
+
img_mask, self.window_size) # nW, window_size, window_size, 1
|
668 |
+
mask_windows = mask_windows.view(-1,
|
669 |
+
self.window_size * self.window_size)
|
670 |
+
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
|
671 |
+
attn_mask = attn_mask.masked_fill(attn_mask != 0,
|
672 |
+
float(-100.0)).masked_fill(
|
673 |
+
attn_mask == 0, float(0.0))
|
674 |
+
|
675 |
+
for blk in self.blocks:
|
676 |
+
blk.H, blk.W = H, W
|
677 |
+
if self.use_checkpoint:
|
678 |
+
x = checkpoint.checkpoint(blk, x, attn_mask)
|
679 |
+
else:
|
680 |
+
x = blk(x, attn_mask)
|
681 |
+
if self.downsample is not None:
|
682 |
+
x_down = self.downsample(x, H, W)
|
683 |
+
Wh, Ww = (H + 1) // 2, (W + 1) // 2
|
684 |
+
return x, H, W, x_down, Wh, Ww
|
685 |
+
else:
|
686 |
+
return x, H, W, x, H, W
|
687 |
+
|
688 |
+
|
689 |
+
class PatchEmbed(nn.Module):
|
690 |
+
""" Image to Patch Embedding
|
691 |
+
|
692 |
+
Args:
|
693 |
+
patch_size (int): Patch token size. Default: 4.
|
694 |
+
in_chans (int): Number of input image channels. Default: 3.
|
695 |
+
embed_dim (int): Number of linear projection output channels. Default: 96.
|
696 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: None
|
697 |
+
"""
|
698 |
+
|
699 |
+
def __init__(self,
|
700 |
+
patch_size=4,
|
701 |
+
in_chans=3,
|
702 |
+
embed_dim=96,
|
703 |
+
norm_layer=None):
|
704 |
+
super().__init__()
|
705 |
+
patch_size = to_2tuple(patch_size)
|
706 |
+
self.patch_size = patch_size
|
707 |
+
|
708 |
+
self.in_chans = in_chans
|
709 |
+
self.embed_dim = embed_dim
|
710 |
+
|
711 |
+
self.proj = nn.Conv2d(in_chans,
|
712 |
+
embed_dim,
|
713 |
+
kernel_size=patch_size,
|
714 |
+
stride=patch_size)
|
715 |
+
if norm_layer is not None:
|
716 |
+
self.norm = norm_layer(embed_dim)
|
717 |
+
else:
|
718 |
+
self.norm = None
|
719 |
+
|
720 |
+
def forward(self, x):
|
721 |
+
"""Forward function."""
|
722 |
+
# padding
|
723 |
+
_, _, H, W = x.size()
|
724 |
+
if W % self.patch_size[1] != 0:
|
725 |
+
x = F.pad(x, (0, self.patch_size[1] - W % self.patch_size[1]))
|
726 |
+
if H % self.patch_size[0] != 0:
|
727 |
+
x = F.pad(x,
|
728 |
+
(0, 0, 0, self.patch_size[0] - H % self.patch_size[0]))
|
729 |
+
|
730 |
+
x = self.proj(x) # B C Wh Ww
|
731 |
+
if self.norm is not None:
|
732 |
+
Wh, Ww = x.size(2), x.size(3)
|
733 |
+
x = x.flatten(2).transpose(1, 2)
|
734 |
+
x = self.norm(x)
|
735 |
+
x = x.transpose(1, 2).view(-1, self.embed_dim, Wh, Ww)
|
736 |
+
|
737 |
+
return x
|
738 |
+
|
739 |
+
|
740 |
+
class SwinTransformer(nn.Module):
|
741 |
+
""" Swin Transformer backbone.
|
742 |
+
A PyTorch impl of : `Swin Transformer: Hierarchical Vision Transformer using Shifted Windows` -
|
743 |
+
https://arxiv.org/pdf/2103.14030
|
744 |
+
|
745 |
+
Args:
|
746 |
+
pretrain_img_size (int): Input image size for training the pretrained model,
|
747 |
+
used in absolute postion embedding. Default 224.
|
748 |
+
patch_size (int | tuple(int)): Patch size. Default: 4.
|
749 |
+
in_chans (int): Number of input image channels. Default: 3.
|
750 |
+
embed_dim (int): Number of linear projection output channels. Default: 96.
|
751 |
+
depths (tuple[int]): Depths of each Swin Transformer stage.
|
752 |
+
num_heads (tuple[int]): Number of attention head of each stage.
|
753 |
+
window_size (int): Window size. Default: 7.
|
754 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4.
|
755 |
+
qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True
|
756 |
+
qk_scale (float): Override default qk scale of head_dim ** -0.5 if set.
|
757 |
+
drop_rate (float): Dropout rate.
|
758 |
+
attn_drop_rate (float): Attention dropout rate. Default: 0.
|
759 |
+
drop_path_rate (float): Stochastic depth rate. Default: 0.2.
|
760 |
+
norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm.
|
761 |
+
ape (bool): If True, add absolute position embedding to the patch embedding. Default: False.
|
762 |
+
patch_norm (bool): If True, add normalization after patch embedding. Default: True.
|
763 |
+
out_indices (Sequence[int]): Output from which stages.
|
764 |
+
frozen_stages (int): Stages to be frozen (stop grad and set eval mode).
|
765 |
+
-1 means not freezing any parameters.
|
766 |
+
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
|
767 |
+
"""
|
768 |
+
|
769 |
+
def __init__(self,
|
770 |
+
pretrain_img_size=224,
|
771 |
+
patch_size=4,
|
772 |
+
in_chans=3,
|
773 |
+
embed_dim=96,
|
774 |
+
depths=[2, 2, 6, 2],
|
775 |
+
num_heads=[3, 6, 12, 24],
|
776 |
+
window_size=7,
|
777 |
+
mlp_ratio=4.,
|
778 |
+
qkv_bias=True,
|
779 |
+
qk_scale=None,
|
780 |
+
drop_rate=0.,
|
781 |
+
attn_drop_rate=0.,
|
782 |
+
drop_path_rate=0.2,
|
783 |
+
norm_layer=nn.LayerNorm,
|
784 |
+
ape=False,
|
785 |
+
patch_norm=True,
|
786 |
+
out_indices=(0, 1, 2, 3),
|
787 |
+
frozen_stages=-1,
|
788 |
+
use_checkpoint=False):
|
789 |
+
super().__init__()
|
790 |
+
|
791 |
+
self.pretrain_img_size = pretrain_img_size
|
792 |
+
self.num_layers = len(depths)
|
793 |
+
self.embed_dim = embed_dim
|
794 |
+
self.ape = ape
|
795 |
+
self.patch_norm = patch_norm
|
796 |
+
self.out_indices = out_indices
|
797 |
+
self.frozen_stages = frozen_stages
|
798 |
+
|
799 |
+
# split image into non-overlapping patches
|
800 |
+
self.patch_embed = PatchEmbed(
|
801 |
+
patch_size=patch_size,
|
802 |
+
in_chans=in_chans,
|
803 |
+
embed_dim=embed_dim,
|
804 |
+
norm_layer=norm_layer if self.patch_norm else None)
|
805 |
+
|
806 |
+
# absolute position embedding
|
807 |
+
if self.ape:
|
808 |
+
pretrain_img_size = to_2tuple(pretrain_img_size)
|
809 |
+
patch_size = to_2tuple(patch_size)
|
810 |
+
patches_resolution = [
|
811 |
+
pretrain_img_size[0] // patch_size[0],
|
812 |
+
pretrain_img_size[1] // patch_size[1]
|
813 |
+
]
|
814 |
+
|
815 |
+
self.absolute_pos_embed = nn.Parameter(
|
816 |
+
torch.zeros(1, embed_dim, patches_resolution[0],
|
817 |
+
patches_resolution[1]))
|
818 |
+
trunc_normal_(self.absolute_pos_embed, std=.02)
|
819 |
+
|
820 |
+
self.pos_drop = nn.Dropout(p=drop_rate)
|
821 |
+
|
822 |
+
# stochastic depth
|
823 |
+
dpr = [
|
824 |
+
x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))
|
825 |
+
] # stochastic depth decay rule
|
826 |
+
|
827 |
+
# build layers
|
828 |
+
self.layers = nn.ModuleList()
|
829 |
+
for i_layer in range(self.num_layers):
|
830 |
+
layer = BasicLayer(
|
831 |
+
dim=int(embed_dim * 2**i_layer),
|
832 |
+
depth=depths[i_layer],
|
833 |
+
num_heads=num_heads[i_layer],
|
834 |
+
window_size=window_size,
|
835 |
+
mlp_ratio=mlp_ratio,
|
836 |
+
qkv_bias=qkv_bias,
|
837 |
+
qk_scale=qk_scale,
|
838 |
+
drop=drop_rate,
|
839 |
+
attn_drop=attn_drop_rate,
|
840 |
+
drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])],
|
841 |
+
norm_layer=norm_layer,
|
842 |
+
downsample=PatchMerging if
|
843 |
+
(i_layer < self.num_layers - 1) else None,
|
844 |
+
use_checkpoint=use_checkpoint)
|
845 |
+
self.layers.append(layer)
|
846 |
+
|
847 |
+
num_features = [int(embed_dim * 2**i) for i in range(self.num_layers)]
|
848 |
+
self.num_features = num_features
|
849 |
+
|
850 |
+
# add a norm layer for each output
|
851 |
+
for i_layer in out_indices:
|
852 |
+
layer = norm_layer(num_features[i_layer])
|
853 |
+
layer_name = f'norm{i_layer}'
|
854 |
+
self.add_module(layer_name, layer)
|
855 |
+
|
856 |
+
self._freeze_stages()
|
857 |
+
|
858 |
+
def _freeze_stages(self):
|
859 |
+
if self.frozen_stages >= 0:
|
860 |
+
self.patch_embed.eval()
|
861 |
+
for param in self.patch_embed.parameters():
|
862 |
+
param.requires_grad = False
|
863 |
+
|
864 |
+
if self.frozen_stages >= 1 and self.ape:
|
865 |
+
self.absolute_pos_embed.requires_grad = False
|
866 |
+
|
867 |
+
if self.frozen_stages >= 2:
|
868 |
+
self.pos_drop.eval()
|
869 |
+
for i in range(0, self.frozen_stages - 1):
|
870 |
+
m = self.layers[i]
|
871 |
+
m.eval()
|
872 |
+
for param in m.parameters():
|
873 |
+
param.requires_grad = False
|
874 |
+
|
875 |
+
def init_weights(self, pretrained=None):
|
876 |
+
"""Initialize the weights in backbone.
|
877 |
+
|
878 |
+
Args:
|
879 |
+
pretrained (str, optional): Path to pre-trained weights.
|
880 |
+
Defaults to None.
|
881 |
+
"""
|
882 |
+
|
883 |
+
def _init_weights(m):
|
884 |
+
if isinstance(m, nn.Linear):
|
885 |
+
trunc_normal_(m.weight, std=.02)
|
886 |
+
if isinstance(m, nn.Linear) and m.bias is not None:
|
887 |
+
nn.init.constant_(m.bias, 0)
|
888 |
+
elif isinstance(m, nn.LayerNorm):
|
889 |
+
nn.init.constant_(m.bias, 0)
|
890 |
+
nn.init.constant_(m.weight, 1.0)
|
891 |
+
|
892 |
+
if isinstance(pretrained, str):
|
893 |
+
self.apply(_init_weights)
|
894 |
+
load_checkpoint(self, pretrained, strict=False, logger=None)
|
895 |
+
elif pretrained is None:
|
896 |
+
self.apply(_init_weights)
|
897 |
+
else:
|
898 |
+
raise TypeError('pretrained must be a str or None')
|
899 |
+
|
900 |
+
def forward(self, x):
|
901 |
+
x = self.patch_embed(x)
|
902 |
+
|
903 |
+
Wh, Ww = x.size(2), x.size(3)
|
904 |
+
if self.ape:
|
905 |
+
# interpolate the position embedding to the corresponding size
|
906 |
+
absolute_pos_embed = F.interpolate(self.absolute_pos_embed,
|
907 |
+
size=(Wh, Ww),
|
908 |
+
mode='bicubic')
|
909 |
+
x = (x + absolute_pos_embed) # B Wh*Ww C
|
910 |
+
|
911 |
+
outs = [x.contiguous()]
|
912 |
+
x = x.flatten(2).transpose(1, 2)
|
913 |
+
x = self.pos_drop(x)
|
914 |
+
for i in range(self.num_layers):
|
915 |
+
layer = self.layers[i]
|
916 |
+
x_out, H, W, x, Wh, Ww = layer(x, Wh, Ww)
|
917 |
+
|
918 |
+
if i in self.out_indices:
|
919 |
+
norm_layer = getattr(self, f'norm{i}')
|
920 |
+
x_out = norm_layer(x_out)
|
921 |
+
|
922 |
+
out = x_out.view(-1, H, W,
|
923 |
+
self.num_features[i]).permute(0, 3, 1,
|
924 |
+
2).contiguous()
|
925 |
+
outs.append(out)
|
926 |
+
|
927 |
+
return tuple(outs)
|
928 |
+
|
929 |
+
def train(self, mode=True):
|
930 |
+
"""Convert the model into training mode while keep layers freezed."""
|
931 |
+
super(SwinTransformer, self).train(mode)
|
932 |
+
self._freeze_stages()
|
933 |
+
|
934 |
+
|
935 |
+
class PositionEmbeddingSine:
|
936 |
+
|
937 |
+
def __init__(self,
|
938 |
+
num_pos_feats=64,
|
939 |
+
temperature=10000,
|
940 |
+
normalize=False,
|
941 |
+
scale=None):
|
942 |
+
super().__init__()
|
943 |
+
self.num_pos_feats = num_pos_feats
|
944 |
+
self.temperature = temperature
|
945 |
+
self.normalize = normalize
|
946 |
+
if scale is not None and normalize is False:
|
947 |
+
raise ValueError("normalize should be True if scale is passed")
|
948 |
+
if scale is None:
|
949 |
+
scale = 2 * math.pi
|
950 |
+
self.scale = scale
|
951 |
+
self.dim_t = torch.arange(0,
|
952 |
+
self.num_pos_feats,
|
953 |
+
dtype=torch_dtype,
|
954 |
+
device=torch_device)
|
955 |
+
|
956 |
+
def __call__(self, b, h, w):
|
957 |
+
mask = torch.zeros([b, h, w], dtype=torch.bool, device=torch_device)
|
958 |
+
assert mask is not None
|
959 |
+
not_mask = ~mask
|
960 |
+
y_embed = not_mask.cumsum(dim=1, dtype=torch_dtype)
|
961 |
+
x_embed = not_mask.cumsum(dim=2, dtype=torch_dtype)
|
962 |
+
if self.normalize:
|
963 |
+
eps = 1e-6
|
964 |
+
y_embed = ((y_embed - 0.5) / (y_embed[:, -1:, :] + eps) *
|
965 |
+
self.scale).to(device=torch_device, dtype=torch_dtype)
|
966 |
+
x_embed = ((x_embed - 0.5) / (x_embed[:, :, -1:] + eps) *
|
967 |
+
self.scale).to(device=torch_device, dtype=torch_dtype)
|
968 |
+
|
969 |
+
dim_t = self.temperature**(2 * (self.dim_t // 2) / self.num_pos_feats)
|
970 |
+
|
971 |
+
pos_x = x_embed[:, :, :, None] / dim_t
|
972 |
+
pos_y = y_embed[:, :, :, None] / dim_t
|
973 |
+
pos_x = torch.stack(
|
974 |
+
(pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()),
|
975 |
+
dim=4).flatten(3)
|
976 |
+
pos_y = torch.stack(
|
977 |
+
(pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()),
|
978 |
+
dim=4).flatten(3)
|
979 |
+
return torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2)
|
980 |
+
|
981 |
+
|
982 |
+
class MCLM(nn.Module):
|
983 |
+
|
984 |
+
def __init__(self, d_model, num_heads, pool_ratios=[1, 4, 8]):
|
985 |
+
super(MCLM, self).__init__()
|
986 |
+
self.attention = nn.ModuleList([
|
987 |
+
nn.MultiheadAttention(d_model, num_heads, dropout=0.1),
|
988 |
+
nn.MultiheadAttention(d_model, num_heads, dropout=0.1),
|
989 |
+
nn.MultiheadAttention(d_model, num_heads, dropout=0.1),
|
990 |
+
nn.MultiheadAttention(d_model, num_heads, dropout=0.1),
|
991 |
+
nn.MultiheadAttention(d_model, num_heads, dropout=0.1)
|
992 |
+
])
|
993 |
+
|
994 |
+
self.linear1 = nn.Linear(d_model, d_model * 2)
|
995 |
+
self.linear2 = nn.Linear(d_model * 2, d_model)
|
996 |
+
self.linear3 = nn.Linear(d_model, d_model * 2)
|
997 |
+
self.linear4 = nn.Linear(d_model * 2, d_model)
|
998 |
+
self.norm1 = nn.LayerNorm(d_model)
|
999 |
+
self.norm2 = nn.LayerNorm(d_model)
|
1000 |
+
self.dropout = nn.Dropout(0.1)
|
1001 |
+
self.dropout1 = nn.Dropout(0.1)
|
1002 |
+
self.dropout2 = nn.Dropout(0.1)
|
1003 |
+
self.activation = get_activation_fn('relu')
|
1004 |
+
self.pool_ratios = pool_ratios
|
1005 |
+
self.p_poses = []
|
1006 |
+
self.g_pos = None
|
1007 |
+
self.positional_encoding = PositionEmbeddingSine(
|
1008 |
+
num_pos_feats=d_model // 2, normalize=True)
|
1009 |
+
|
1010 |
+
def forward(self, l, g):
|
1011 |
+
"""
|
1012 |
+
l: 4,c,h,w
|
1013 |
+
g: 1,c,h,w
|
1014 |
+
"""
|
1015 |
+
b, c, h, w = l.size()
|
1016 |
+
# 4,c,h,w -> 1,c,2h,2w
|
1017 |
+
concated_locs = rearrange(l,
|
1018 |
+
'(hg wg b) c h w -> b c (hg h) (wg w)',
|
1019 |
+
hg=2,
|
1020 |
+
wg=2)
|
1021 |
+
|
1022 |
+
pools = []
|
1023 |
+
for pool_ratio in self.pool_ratios:
|
1024 |
+
# b,c,h,w
|
1025 |
+
tgt_hw = (round(h / pool_ratio), round(w / pool_ratio))
|
1026 |
+
pool = F.adaptive_avg_pool2d(concated_locs, tgt_hw)
|
1027 |
+
pools.append(rearrange(pool, 'b c h w -> (h w) b c'))
|
1028 |
+
if self.g_pos is None:
|
1029 |
+
pos_emb = self.positional_encoding(pool.shape[0],
|
1030 |
+
pool.shape[2],
|
1031 |
+
pool.shape[3])
|
1032 |
+
pos_emb = rearrange(pos_emb, 'b c h w -> (h w) b c')
|
1033 |
+
self.p_poses.append(pos_emb)
|
1034 |
+
pools = torch.cat(pools, 0)
|
1035 |
+
if self.g_pos is None:
|
1036 |
+
self.p_poses = torch.cat(self.p_poses, dim=0)
|
1037 |
+
pos_emb = self.positional_encoding(g.shape[0], g.shape[2],
|
1038 |
+
g.shape[3])
|
1039 |
+
self.g_pos = rearrange(pos_emb, 'b c h w -> (h w) b c')
|
1040 |
+
|
1041 |
+
# attention between glb (q) & multisensory concated-locs (k,v)
|
1042 |
+
g_hw_b_c = rearrange(g, 'b c h w -> (h w) b c')
|
1043 |
+
g_hw_b_c = g_hw_b_c + self.dropout1(self.attention[0](
|
1044 |
+
g_hw_b_c + self.g_pos, pools + self.p_poses, pools)[0])
|
1045 |
+
g_hw_b_c = self.norm1(g_hw_b_c)
|
1046 |
+
g_hw_b_c = g_hw_b_c + self.dropout2(
|
1047 |
+
self.linear2(
|
1048 |
+
self.dropout(self.activation(self.linear1(g_hw_b_c)).clone())))
|
1049 |
+
g_hw_b_c = self.norm2(g_hw_b_c)
|
1050 |
+
|
1051 |
+
# attention between origin locs (q) & freashed glb (k,v)
|
1052 |
+
l_hw_b_c = rearrange(l, "b c h w -> (h w) b c")
|
1053 |
+
_g_hw_b_c = rearrange(g_hw_b_c, '(h w) b c -> h w b c', h=h, w=w)
|
1054 |
+
_g_hw_b_c = rearrange(_g_hw_b_c,
|
1055 |
+
"(ng h) (nw w) b c -> (h w) (ng nw b) c",
|
1056 |
+
ng=2,
|
1057 |
+
nw=2)
|
1058 |
+
outputs_re = []
|
1059 |
+
for i, (_l, _g) in enumerate(
|
1060 |
+
zip(l_hw_b_c.chunk(4, dim=1), _g_hw_b_c.chunk(4, dim=1))):
|
1061 |
+
outputs_re.append(self.attention[i + 1](_l, _g,
|
1062 |
+
_g)[0]) # (h w) 1 c
|
1063 |
+
outputs_re = torch.cat(outputs_re, 1) # (h w) 4 c
|
1064 |
+
|
1065 |
+
l_hw_b_c = l_hw_b_c + self.dropout1(outputs_re)
|
1066 |
+
l_hw_b_c = self.norm1(l_hw_b_c)
|
1067 |
+
l_hw_b_c = l_hw_b_c + self.dropout2(
|
1068 |
+
self.linear4(
|
1069 |
+
self.dropout(self.activation(self.linear3(l_hw_b_c)).clone())))
|
1070 |
+
l_hw_b_c = self.norm2(l_hw_b_c)
|
1071 |
+
|
1072 |
+
l = torch.cat((l_hw_b_c, g_hw_b_c), 1) # hw,b(5),c
|
1073 |
+
return rearrange(l, "(h w) b c -> b c h w", h=h, w=w) ## (5,c,h*w)
|
1074 |
+
|
1075 |
+
|
1076 |
+
class inf_MCLM(nn.Module):
|
1077 |
+
|
1078 |
+
def __init__(self, d_model, num_heads, pool_ratios=[1, 4, 8]):
|
1079 |
+
super(inf_MCLM, self).__init__()
|
1080 |
+
self.attention = nn.ModuleList([
|
1081 |
+
nn.MultiheadAttention(d_model, num_heads, dropout=0.1),
|
1082 |
+
nn.MultiheadAttention(d_model, num_heads, dropout=0.1),
|
1083 |
+
nn.MultiheadAttention(d_model, num_heads, dropout=0.1),
|
1084 |
+
nn.MultiheadAttention(d_model, num_heads, dropout=0.1),
|
1085 |
+
nn.MultiheadAttention(d_model, num_heads, dropout=0.1)
|
1086 |
+
])
|
1087 |
+
|
1088 |
+
self.linear1 = nn.Linear(d_model, d_model * 2)
|
1089 |
+
self.linear2 = nn.Linear(d_model * 2, d_model)
|
1090 |
+
self.linear3 = nn.Linear(d_model, d_model * 2)
|
1091 |
+
self.linear4 = nn.Linear(d_model * 2, d_model)
|
1092 |
+
self.norm1 = nn.LayerNorm(d_model)
|
1093 |
+
self.norm2 = nn.LayerNorm(d_model)
|
1094 |
+
self.dropout = nn.Dropout(0.1)
|
1095 |
+
self.dropout1 = nn.Dropout(0.1)
|
1096 |
+
self.dropout2 = nn.Dropout(0.1)
|
1097 |
+
self.activation = get_activation_fn('relu')
|
1098 |
+
self.pool_ratios = pool_ratios
|
1099 |
+
self.p_poses = []
|
1100 |
+
self.g_pos = None
|
1101 |
+
self.positional_encoding = PositionEmbeddingSine(
|
1102 |
+
num_pos_feats=d_model // 2, normalize=True)
|
1103 |
+
|
1104 |
+
def forward(self, l, g):
|
1105 |
+
"""
|
1106 |
+
l: 4,c,h,w
|
1107 |
+
g: 1,c,h,w
|
1108 |
+
"""
|
1109 |
+
b, c, h, w = l.size()
|
1110 |
+
# 4,c,h,w -> 1,c,2h,2w
|
1111 |
+
concated_locs = rearrange(l,
|
1112 |
+
'(hg wg b) c h w -> b c (hg h) (wg w)',
|
1113 |
+
hg=2,
|
1114 |
+
wg=2)
|
1115 |
+
self.p_poses = []
|
1116 |
+
pools = []
|
1117 |
+
for pool_ratio in self.pool_ratios:
|
1118 |
+
# b,c,h,w
|
1119 |
+
tgt_hw = (round(h / pool_ratio), round(w / pool_ratio))
|
1120 |
+
pool = F.adaptive_avg_pool2d(concated_locs, tgt_hw)
|
1121 |
+
pools.append(rearrange(pool, 'b c h w -> (h w) b c'))
|
1122 |
+
# if self.g_pos is None:
|
1123 |
+
pos_emb = self.positional_encoding(pool.shape[0], pool.shape[2],
|
1124 |
+
pool.shape[3])
|
1125 |
+
pos_emb = rearrange(pos_emb, 'b c h w -> (h w) b c')
|
1126 |
+
self.p_poses.append(pos_emb)
|
1127 |
+
pools = torch.cat(pools, 0)
|
1128 |
+
# if self.g_pos is None:
|
1129 |
+
self.p_poses = torch.cat(self.p_poses, dim=0)
|
1130 |
+
pos_emb = self.positional_encoding(g.shape[0], g.shape[2], g.shape[3])
|
1131 |
+
self.g_pos = rearrange(pos_emb, 'b c h w -> (h w) b c')
|
1132 |
+
|
1133 |
+
# attention between glb (q) & multisensory concated-locs (k,v)
|
1134 |
+
g_hw_b_c = rearrange(g, 'b c h w -> (h w) b c')
|
1135 |
+
g_hw_b_c = g_hw_b_c + self.dropout1(self.attention[0](
|
1136 |
+
g_hw_b_c + self.g_pos, pools + self.p_poses, pools)[0])
|
1137 |
+
g_hw_b_c = self.norm1(g_hw_b_c)
|
1138 |
+
g_hw_b_c = g_hw_b_c + self.dropout2(
|
1139 |
+
self.linear2(
|
1140 |
+
self.dropout(self.activation(self.linear1(g_hw_b_c)).clone())))
|
1141 |
+
g_hw_b_c = self.norm2(g_hw_b_c)
|
1142 |
+
|
1143 |
+
# attention between origin locs (q) & freashed glb (k,v)
|
1144 |
+
l_hw_b_c = rearrange(l, "b c h w -> (h w) b c")
|
1145 |
+
_g_hw_b_c = rearrange(g_hw_b_c, '(h w) b c -> h w b c', h=h, w=w)
|
1146 |
+
_g_hw_b_c = rearrange(_g_hw_b_c,
|
1147 |
+
"(ng h) (nw w) b c -> (h w) (ng nw b) c",
|
1148 |
+
ng=2,
|
1149 |
+
nw=2)
|
1150 |
+
outputs_re = []
|
1151 |
+
for i, (_l, _g) in enumerate(
|
1152 |
+
zip(l_hw_b_c.chunk(4, dim=1), _g_hw_b_c.chunk(4, dim=1))):
|
1153 |
+
outputs_re.append(self.attention[i + 1](_l, _g,
|
1154 |
+
_g)[0]) # (h w) 1 c
|
1155 |
+
outputs_re = torch.cat(outputs_re, 1) # (h w) 4 c
|
1156 |
+
|
1157 |
+
l_hw_b_c = l_hw_b_c + self.dropout1(outputs_re)
|
1158 |
+
l_hw_b_c = self.norm1(l_hw_b_c)
|
1159 |
+
l_hw_b_c = l_hw_b_c + self.dropout2(
|
1160 |
+
self.linear4(
|
1161 |
+
self.dropout(self.activation(self.linear3(l_hw_b_c)).clone())))
|
1162 |
+
l_hw_b_c = self.norm2(l_hw_b_c)
|
1163 |
+
|
1164 |
+
l = torch.cat((l_hw_b_c, g_hw_b_c), 1) # hw,b(5),c
|
1165 |
+
return rearrange(l, "(h w) b c -> b c h w", h=h, w=w) ## (5,c,h*w)
|
1166 |
+
|
1167 |
+
|
1168 |
+
class MCRM(nn.Module):
|
1169 |
+
|
1170 |
+
def __init__(self, d_model, num_heads, pool_ratios=[4, 8, 16], h=None):
|
1171 |
+
super(MCRM, self).__init__()
|
1172 |
+
self.attention = nn.ModuleList([
|
1173 |
+
nn.MultiheadAttention(d_model, num_heads, dropout=0.1),
|
1174 |
+
nn.MultiheadAttention(d_model, num_heads, dropout=0.1),
|
1175 |
+
nn.MultiheadAttention(d_model, num_heads, dropout=0.1),
|
1176 |
+
nn.MultiheadAttention(d_model, num_heads, dropout=0.1)
|
1177 |
+
])
|
1178 |
+
|
1179 |
+
self.linear3 = nn.Linear(d_model, d_model * 2)
|
1180 |
+
self.linear4 = nn.Linear(d_model * 2, d_model)
|
1181 |
+
self.norm1 = nn.LayerNorm(d_model)
|
1182 |
+
self.norm2 = nn.LayerNorm(d_model)
|
1183 |
+
self.dropout = nn.Dropout(0.1)
|
1184 |
+
self.dropout1 = nn.Dropout(0.1)
|
1185 |
+
self.dropout2 = nn.Dropout(0.1)
|
1186 |
+
self.sigmoid = nn.Sigmoid()
|
1187 |
+
self.activation = get_activation_fn('relu')
|
1188 |
+
self.sal_conv = nn.Conv2d(d_model, 1, 1)
|
1189 |
+
self.pool_ratios = pool_ratios
|
1190 |
+
self.positional_encoding = PositionEmbeddingSine(
|
1191 |
+
num_pos_feats=d_model // 2, normalize=True)
|
1192 |
+
|
1193 |
+
def forward(self, x):
|
1194 |
+
b, c, h, w = x.size()
|
1195 |
+
loc, glb = x.split([4, 1], dim=0) # 4,c,h,w; 1,c,h,w
|
1196 |
+
# b(4),c,h,w
|
1197 |
+
patched_glb = rearrange(glb,
|
1198 |
+
'b c (hg h) (wg w) -> (hg wg b) c h w',
|
1199 |
+
hg=2,
|
1200 |
+
wg=2)
|
1201 |
+
|
1202 |
+
# generate token attention map
|
1203 |
+
token_attention_map = self.sigmoid(self.sal_conv(glb))
|
1204 |
+
token_attention_map = F.interpolate(token_attention_map,
|
1205 |
+
size=patches2image(loc).shape[-2:],
|
1206 |
+
mode='nearest')
|
1207 |
+
loc = loc * rearrange(token_attention_map,
|
1208 |
+
'b c (hg h) (wg w) -> (hg wg b) c h w',
|
1209 |
+
hg=2,
|
1210 |
+
wg=2)
|
1211 |
+
pools = []
|
1212 |
+
for pool_ratio in self.pool_ratios:
|
1213 |
+
tgt_hw = (round(h / pool_ratio), round(w / pool_ratio))
|
1214 |
+
pool = F.adaptive_avg_pool2d(patched_glb, tgt_hw)
|
1215 |
+
pools.append(rearrange(pool,
|
1216 |
+
'nl c h w -> nl c (h w)')) # nl(4),c,hw
|
1217 |
+
# nl(4),c,nphw -> nl(4),nphw,1,c
|
1218 |
+
pools = rearrange(torch.cat(pools, 2), "nl c nphw -> nl nphw 1 c")
|
1219 |
+
loc_ = rearrange(loc, 'nl c h w -> nl (h w) 1 c')
|
1220 |
+
outputs = []
|
1221 |
+
for i, q in enumerate(
|
1222 |
+
loc_.unbind(dim=0)): # traverse all local patches
|
1223 |
+
# np*hw,1,c
|
1224 |
+
v = pools[i]
|
1225 |
+
k = v
|
1226 |
+
outputs.append(self.attention[i](q, k, v)[0])
|
1227 |
+
outputs = torch.cat(outputs, 1)
|
1228 |
+
src = loc.view(4, c, -1).permute(2, 0, 1) + self.dropout1(outputs)
|
1229 |
+
src = self.norm1(src)
|
1230 |
+
src = src + self.dropout2(
|
1231 |
+
self.linear4(
|
1232 |
+
self.dropout(self.activation(self.linear3(src)).clone())))
|
1233 |
+
src = self.norm2(src)
|
1234 |
+
|
1235 |
+
src = src.permute(1, 2, 0).reshape(4, c, h, w) # freshed loc
|
1236 |
+
glb = glb + F.interpolate(patches2image(src),
|
1237 |
+
size=glb.shape[-2:],
|
1238 |
+
mode='nearest') # freshed glb
|
1239 |
+
return torch.cat((src, glb), 0), token_attention_map
|
1240 |
+
|
1241 |
+
|
1242 |
+
class inf_MCRM(nn.Module):
|
1243 |
+
|
1244 |
+
def __init__(self, d_model, num_heads, pool_ratios=[4, 8, 16], h=None):
|
1245 |
+
super(inf_MCRM, self).__init__()
|
1246 |
+
self.attention = nn.ModuleList([
|
1247 |
+
nn.MultiheadAttention(d_model, num_heads, dropout=0.1),
|
1248 |
+
nn.MultiheadAttention(d_model, num_heads, dropout=0.1),
|
1249 |
+
nn.MultiheadAttention(d_model, num_heads, dropout=0.1),
|
1250 |
+
nn.MultiheadAttention(d_model, num_heads, dropout=0.1)
|
1251 |
+
])
|
1252 |
+
|
1253 |
+
self.linear3 = nn.Linear(d_model, d_model * 2)
|
1254 |
+
self.linear4 = nn.Linear(d_model * 2, d_model)
|
1255 |
+
self.norm1 = nn.LayerNorm(d_model)
|
1256 |
+
self.norm2 = nn.LayerNorm(d_model)
|
1257 |
+
self.dropout = nn.Dropout(0.1)
|
1258 |
+
self.dropout1 = nn.Dropout(0.1)
|
1259 |
+
self.dropout2 = nn.Dropout(0.1)
|
1260 |
+
self.sigmoid = nn.Sigmoid()
|
1261 |
+
self.activation = get_activation_fn('relu')
|
1262 |
+
self.sal_conv = nn.Conv2d(d_model, 1, 1)
|
1263 |
+
self.pool_ratios = pool_ratios
|
1264 |
+
self.positional_encoding = PositionEmbeddingSine(
|
1265 |
+
num_pos_feats=d_model // 2, normalize=True)
|
1266 |
+
|
1267 |
+
def forward(self, x):
|
1268 |
+
b, c, h, w = x.size()
|
1269 |
+
loc, glb = x.split([4, 1], dim=0) # 4,c,h,w; 1,c,h,w
|
1270 |
+
# b(4),c,h,w
|
1271 |
+
patched_glb = rearrange(glb,
|
1272 |
+
'b c (hg h) (wg w) -> (hg wg b) c h w',
|
1273 |
+
hg=2,
|
1274 |
+
wg=2)
|
1275 |
+
|
1276 |
+
# generate token attention map
|
1277 |
+
token_attention_map = self.sigmoid(self.sal_conv(glb))
|
1278 |
+
token_attention_map = F.interpolate(token_attention_map,
|
1279 |
+
size=patches2image(loc).shape[-2:],
|
1280 |
+
mode='nearest')
|
1281 |
+
loc = loc * rearrange(token_attention_map,
|
1282 |
+
'b c (hg h) (wg w) -> (hg wg b) c h w',
|
1283 |
+
hg=2,
|
1284 |
+
wg=2)
|
1285 |
+
pools = []
|
1286 |
+
for pool_ratio in self.pool_ratios:
|
1287 |
+
tgt_hw = (round(h / pool_ratio), round(w / pool_ratio))
|
1288 |
+
pool = F.adaptive_avg_pool2d(patched_glb, tgt_hw)
|
1289 |
+
pools.append(rearrange(pool,
|
1290 |
+
'nl c h w -> nl c (h w)')) # nl(4),c,hw
|
1291 |
+
# nl(4),c,nphw -> nl(4),nphw,1,c
|
1292 |
+
pools = rearrange(torch.cat(pools, 2), "nl c nphw -> nl nphw 1 c")
|
1293 |
+
loc_ = rearrange(loc, 'nl c h w -> nl (h w) 1 c')
|
1294 |
+
outputs = []
|
1295 |
+
for i, q in enumerate(
|
1296 |
+
loc_.unbind(dim=0)): # traverse all local patches
|
1297 |
+
# np*hw,1,c
|
1298 |
+
v = pools[i]
|
1299 |
+
k = v
|
1300 |
+
outputs.append(self.attention[i](q, k, v)[0])
|
1301 |
+
outputs = torch.cat(outputs, 1)
|
1302 |
+
src = loc.view(4, c, -1).permute(2, 0, 1) + self.dropout1(outputs)
|
1303 |
+
src = self.norm1(src)
|
1304 |
+
src = src + self.dropout2(
|
1305 |
+
self.linear4(
|
1306 |
+
self.dropout(self.activation(self.linear3(src)).clone())))
|
1307 |
+
src = self.norm2(src)
|
1308 |
+
|
1309 |
+
src = src.permute(1, 2, 0).reshape(4, c, h, w) # freshed loc
|
1310 |
+
glb = glb + F.interpolate(patches2image(src),
|
1311 |
+
size=glb.shape[-2:],
|
1312 |
+
mode='nearest') # freshed glb
|
1313 |
+
return torch.cat((src, glb), 0)
|
1314 |
+
|
1315 |
+
|
1316 |
+
# model for single-scale training
|
1317 |
+
class MVANet(nn.Module):
|
1318 |
+
|
1319 |
+
def __init__(self):
|
1320 |
+
super().__init__()
|
1321 |
+
self.backbone = SwinB(pretrained=True)
|
1322 |
+
emb_dim = 128
|
1323 |
+
self.sideout5 = nn.Sequential(
|
1324 |
+
nn.Conv2d(emb_dim, 1, kernel_size=3, padding=1))
|
1325 |
+
self.sideout4 = nn.Sequential(
|
1326 |
+
nn.Conv2d(emb_dim, 1, kernel_size=3, padding=1))
|
1327 |
+
self.sideout3 = nn.Sequential(
|
1328 |
+
nn.Conv2d(emb_dim, 1, kernel_size=3, padding=1))
|
1329 |
+
self.sideout2 = nn.Sequential(
|
1330 |
+
nn.Conv2d(emb_dim, 1, kernel_size=3, padding=1))
|
1331 |
+
self.sideout1 = nn.Sequential(
|
1332 |
+
nn.Conv2d(emb_dim, 1, kernel_size=3, padding=1))
|
1333 |
+
|
1334 |
+
self.output5 = make_cbr(1024, emb_dim)
|
1335 |
+
self.output4 = make_cbr(512, emb_dim)
|
1336 |
+
self.output3 = make_cbr(256, emb_dim)
|
1337 |
+
self.output2 = make_cbr(128, emb_dim)
|
1338 |
+
self.output1 = make_cbr(128, emb_dim)
|
1339 |
+
|
1340 |
+
self.multifieldcrossatt = MCLM(emb_dim, 1, [1, 4, 8])
|
1341 |
+
self.conv1 = make_cbr(emb_dim, emb_dim)
|
1342 |
+
self.conv2 = make_cbr(emb_dim, emb_dim)
|
1343 |
+
self.conv3 = make_cbr(emb_dim, emb_dim)
|
1344 |
+
self.conv4 = make_cbr(emb_dim, emb_dim)
|
1345 |
+
self.dec_blk1 = MCRM(emb_dim, 1, [2, 4, 8])
|
1346 |
+
self.dec_blk2 = MCRM(emb_dim, 1, [2, 4, 8])
|
1347 |
+
self.dec_blk3 = MCRM(emb_dim, 1, [2, 4, 8])
|
1348 |
+
self.dec_blk4 = MCRM(emb_dim, 1, [2, 4, 8])
|
1349 |
+
|
1350 |
+
self.insmask_head = nn.Sequential(
|
1351 |
+
nn.Conv2d(emb_dim, 384, kernel_size=3, padding=1),
|
1352 |
+
nn.BatchNorm2d(384), nn.PReLU(),
|
1353 |
+
nn.Conv2d(384, 384, kernel_size=3, padding=1), nn.BatchNorm2d(384),
|
1354 |
+
nn.PReLU(), nn.Conv2d(384, emb_dim, kernel_size=3, padding=1))
|
1355 |
+
|
1356 |
+
self.shallow = nn.Sequential(
|
1357 |
+
nn.Conv2d(3, emb_dim, kernel_size=3, padding=1))
|
1358 |
+
self.upsample1 = make_cbg(emb_dim, emb_dim)
|
1359 |
+
self.upsample2 = make_cbg(emb_dim, emb_dim)
|
1360 |
+
self.output = nn.Sequential(
|
1361 |
+
nn.Conv2d(emb_dim, 1, kernel_size=3, padding=1))
|
1362 |
+
|
1363 |
+
for m in self.modules():
|
1364 |
+
if isinstance(m, nn.ReLU) or isinstance(m, nn.Dropout):
|
1365 |
+
m.inplace = True
|
1366 |
+
|
1367 |
+
def forward(self, x):
|
1368 |
+
x = x.to(dtype=torch_dtype, device=torch_device)
|
1369 |
+
shallow = self.shallow(x)
|
1370 |
+
glb = rescale_to(x, scale_factor=0.5, interpolation='bilinear')
|
1371 |
+
loc = image2patches(x)
|
1372 |
+
input = torch.cat((loc, glb), dim=0)
|
1373 |
+
feature = self.backbone(input)
|
1374 |
+
e5 = self.output5(feature[4]) # (5,128,16,16)
|
1375 |
+
e4 = self.output4(feature[3]) # (5,128,32,32)
|
1376 |
+
e3 = self.output3(feature[2]) # (5,128,64,64)
|
1377 |
+
e2 = self.output2(feature[1]) # (5,128,128,128)
|
1378 |
+
e1 = self.output1(feature[0]) # (5,128,128,128)
|
1379 |
+
loc_e5, glb_e5 = e5.split([4, 1], dim=0)
|
1380 |
+
e5 = self.multifieldcrossatt(loc_e5, glb_e5) # (4,128,16,16)
|
1381 |
+
|
1382 |
+
e4, tokenattmap4 = self.dec_blk4(e4 + resize_as(e5, e4))
|
1383 |
+
e4 = self.conv4(e4)
|
1384 |
+
e3, tokenattmap3 = self.dec_blk3(e3 + resize_as(e4, e3))
|
1385 |
+
e3 = self.conv3(e3)
|
1386 |
+
e2, tokenattmap2 = self.dec_blk2(e2 + resize_as(e3, e2))
|
1387 |
+
e2 = self.conv2(e2)
|
1388 |
+
e1, tokenattmap1 = self.dec_blk1(e1 + resize_as(e2, e1))
|
1389 |
+
e1 = self.conv1(e1)
|
1390 |
+
loc_e1, glb_e1 = e1.split([4, 1], dim=0)
|
1391 |
+
output1_cat = patches2image(loc_e1) # (1,128,256,256)
|
1392 |
+
# add glb feat in
|
1393 |
+
output1_cat = output1_cat + resize_as(glb_e1, output1_cat)
|
1394 |
+
# merge
|
1395 |
+
final_output = self.insmask_head(output1_cat) # (1,128,256,256)
|
1396 |
+
# shallow feature merge
|
1397 |
+
final_output = final_output + resize_as(shallow, final_output)
|
1398 |
+
final_output = self.upsample1(rescale_to(final_output))
|
1399 |
+
final_output = rescale_to(final_output +
|
1400 |
+
resize_as(shallow, final_output))
|
1401 |
+
final_output = self.upsample2(final_output)
|
1402 |
+
final_output = self.output(final_output)
|
1403 |
+
####
|
1404 |
+
sideout5 = self.sideout5(e5).to(dtype=torch_dtype, device=torch_device)
|
1405 |
+
sideout4 = self.sideout4(e4)
|
1406 |
+
sideout3 = self.sideout3(e3)
|
1407 |
+
sideout2 = self.sideout2(e2)
|
1408 |
+
sideout1 = self.sideout1(e1)
|
1409 |
+
#######glb_sideouts ######
|
1410 |
+
glb5 = self.sideout5(glb_e5)
|
1411 |
+
glb4 = sideout4[-1, :, :, :].unsqueeze(0)
|
1412 |
+
glb3 = sideout3[-1, :, :, :].unsqueeze(0)
|
1413 |
+
glb2 = sideout2[-1, :, :, :].unsqueeze(0)
|
1414 |
+
glb1 = sideout1[-1, :, :, :].unsqueeze(0)
|
1415 |
+
####### concat 4 to 1 #######
|
1416 |
+
sideout1 = patches2image(sideout1[:-1]).to(dtype=torch_dtype,
|
1417 |
+
device=torch_device)
|
1418 |
+
sideout2 = patches2image(sideout2[:-1]).to(
|
1419 |
+
dtype=torch_dtype,
|
1420 |
+
device=torch_device) ####(5,c,h,w) -> (1 c 2h,2w)
|
1421 |
+
sideout3 = patches2image(sideout3[:-1]).to(dtype=torch_dtype,
|
1422 |
+
device=torch_device)
|
1423 |
+
sideout4 = patches2image(sideout4[:-1]).to(dtype=torch_dtype,
|
1424 |
+
device=torch_device)
|
1425 |
+
sideout5 = patches2image(sideout5[:-1]).to(dtype=torch_dtype,
|
1426 |
+
device=torch_device)
|
1427 |
+
if self.training:
|
1428 |
+
return sideout5, sideout4, sideout3, sideout2, sideout1, final_output, glb5, glb4, glb3, glb2, glb1, tokenattmap4, tokenattmap3, tokenattmap2, tokenattmap1
|
1429 |
+
else:
|
1430 |
+
return final_output
|
1431 |
+
|
1432 |
+
|
1433 |
+
# model for multi-scale testing
|
1434 |
+
class inf_MVANet(nn.Module):
|
1435 |
+
|
1436 |
+
def __init__(self):
|
1437 |
+
super().__init__()
|
1438 |
+
# self.backbone = SwinB(pretrained=True)
|
1439 |
+
self.backbone = SwinB(pretrained=False)
|
1440 |
+
|
1441 |
+
emb_dim = 128
|
1442 |
+
self.output5 = make_cbr(1024, emb_dim)
|
1443 |
+
self.output4 = make_cbr(512, emb_dim)
|
1444 |
+
self.output3 = make_cbr(256, emb_dim)
|
1445 |
+
self.output2 = make_cbr(128, emb_dim)
|
1446 |
+
self.output1 = make_cbr(128, emb_dim)
|
1447 |
+
|
1448 |
+
self.multifieldcrossatt = inf_MCLM(emb_dim, 1, [1, 4, 8])
|
1449 |
+
self.conv1 = make_cbr(emb_dim, emb_dim)
|
1450 |
+
self.conv2 = make_cbr(emb_dim, emb_dim)
|
1451 |
+
self.conv3 = make_cbr(emb_dim, emb_dim)
|
1452 |
+
self.conv4 = make_cbr(emb_dim, emb_dim)
|
1453 |
+
self.dec_blk1 = inf_MCRM(emb_dim, 1, [2, 4, 8])
|
1454 |
+
self.dec_blk2 = inf_MCRM(emb_dim, 1, [2, 4, 8])
|
1455 |
+
self.dec_blk3 = inf_MCRM(emb_dim, 1, [2, 4, 8])
|
1456 |
+
self.dec_blk4 = inf_MCRM(emb_dim, 1, [2, 4, 8])
|
1457 |
+
|
1458 |
+
self.insmask_head = nn.Sequential(
|
1459 |
+
nn.Conv2d(emb_dim, 384, kernel_size=3, padding=1),
|
1460 |
+
nn.BatchNorm2d(384), nn.PReLU(),
|
1461 |
+
nn.Conv2d(384, 384, kernel_size=3, padding=1), nn.BatchNorm2d(384),
|
1462 |
+
nn.PReLU(), nn.Conv2d(384, emb_dim, kernel_size=3, padding=1))
|
1463 |
+
|
1464 |
+
self.shallow = nn.Sequential(
|
1465 |
+
nn.Conv2d(3, emb_dim, kernel_size=3, padding=1))
|
1466 |
+
self.upsample1 = make_cbg(emb_dim, emb_dim)
|
1467 |
+
self.upsample2 = make_cbg(emb_dim, emb_dim)
|
1468 |
+
self.output = nn.Sequential(
|
1469 |
+
nn.Conv2d(emb_dim, 1, kernel_size=3, padding=1))
|
1470 |
+
|
1471 |
+
for m in self.modules():
|
1472 |
+
if isinstance(m, nn.ReLU) or isinstance(m, nn.Dropout):
|
1473 |
+
m.inplace = True
|
1474 |
+
|
1475 |
+
def forward(self, x):
|
1476 |
+
shallow = self.shallow(x)
|
1477 |
+
glb = rescale_to(x, scale_factor=0.5, interpolation='bilinear')
|
1478 |
+
loc = image2patches(x)
|
1479 |
+
input = torch.cat((loc, glb), dim=0)
|
1480 |
+
feature = self.backbone(input)
|
1481 |
+
e5 = self.output5(feature[4])
|
1482 |
+
e4 = self.output4(feature[3])
|
1483 |
+
e3 = self.output3(feature[2])
|
1484 |
+
e2 = self.output2(feature[1])
|
1485 |
+
e1 = self.output1(feature[0])
|
1486 |
+
loc_e5, glb_e5 = e5.split([4, 1], dim=0)
|
1487 |
+
e5_cat = self.multifieldcrossatt(loc_e5, glb_e5)
|
1488 |
+
|
1489 |
+
e4 = self.conv4(self.dec_blk4(e4 + resize_as(e5_cat, e4)))
|
1490 |
+
e3 = self.conv3(self.dec_blk3(e3 + resize_as(e4, e3)))
|
1491 |
+
e2 = self.conv2(self.dec_blk2(e2 + resize_as(e3, e2)))
|
1492 |
+
e1 = self.conv1(self.dec_blk1(e1 + resize_as(e2, e1)))
|
1493 |
+
loc_e1, glb_e1 = e1.split([4, 1], dim=0)
|
1494 |
+
# after decoder, concat loc features to a whole one, and merge
|
1495 |
+
output1_cat = patches2image(loc_e1)
|
1496 |
+
# add glb feat in
|
1497 |
+
output1_cat = output1_cat + resize_as(glb_e1, output1_cat)
|
1498 |
+
# merge
|
1499 |
+
final_output = self.insmask_head(output1_cat)
|
1500 |
+
# shallow feature merge
|
1501 |
+
final_output = final_output + resize_as(shallow, final_output)
|
1502 |
+
final_output = self.upsample1(rescale_to(final_output))
|
1503 |
+
final_output = rescale_to(final_output +
|
1504 |
+
resize_as(shallow, final_output))
|
1505 |
+
final_output = self.upsample2(final_output)
|
1506 |
+
final_output = self.output(final_output)
|
1507 |
+
return final_output
|
1508 |
+
#+end_src
|
1509 |
+
|
1510 |
+
** Function to load model
|
1511 |
+
#+begin_src python :shebang #!/usr/bin/python3 :results output :tangle ./MVANet_inference.function.py
|
1512 |
+
def load_model(model_checkpoint_path):
|
1513 |
+
torch.cuda.set_device(0)
|
1514 |
+
|
1515 |
+
net = inf_MVANet().to(dtype=torch_dtype, device=torch_device)
|
1516 |
+
|
1517 |
+
pretrained_dict = torch.load(model_checkpoint_path,
|
1518 |
+
map_location=torch_device)
|
1519 |
+
|
1520 |
+
model_dict = net.state_dict()
|
1521 |
+
pretrained_dict = {
|
1522 |
+
k: v
|
1523 |
+
for k, v in pretrained_dict.items() if k in model_dict
|
1524 |
+
}
|
1525 |
+
model_dict.update(pretrained_dict)
|
1526 |
+
net.load_state_dict(model_dict)
|
1527 |
+
net = net.to(dtype=torch_dtype, device=torch_device)
|
1528 |
+
net.eval()
|
1529 |
+
return net
|
1530 |
+
|
1531 |
+
|
1532 |
+
def load_transforms_stripped():
|
1533 |
+
img_transform = transforms.Compose([
|
1534 |
+
# transforms.ToTensor(),
|
1535 |
+
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
|
1536 |
+
])
|
1537 |
+
|
1538 |
+
return img_transform
|
1539 |
+
|
1540 |
+
|
1541 |
+
def load_transforms():
|
1542 |
+
img_transform = transforms.Compose([
|
1543 |
+
# transforms.ToTensor(),
|
1544 |
+
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
|
1545 |
+
])
|
1546 |
+
|
1547 |
+
depth_transform = transforms.ToTensor()
|
1548 |
+
target_transform = transforms.ToTensor()
|
1549 |
+
to_pil = transforms.ToPILImage()
|
1550 |
+
|
1551 |
+
transforms_var = tta.Compose([
|
1552 |
+
tta.HorizontalFlip(),
|
1553 |
+
tta.Scale(scales=[0.75, 1, 1.25],
|
1554 |
+
interpolation='bilinear',
|
1555 |
+
align_corners=False),
|
1556 |
+
])
|
1557 |
+
|
1558 |
+
return (img_transform, depth_transform, target_transform, to_pil,
|
1559 |
+
transforms_var)
|
1560 |
+
#+end_src
|
1561 |
+
|
1562 |
+
** Function for modular inference CV
|
1563 |
+
#+begin_src python :shebang #!/usr/bin/python3 :results output :tangle ./MVANet_inference.function.py
|
1564 |
+
def do_infer_tensor2tensor(img, net):
|
1565 |
+
|
1566 |
+
img_transform = transforms.Compose(
|
1567 |
+
[transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])
|
1568 |
+
|
1569 |
+
h_, w_ = img.shape[1], img.shape[2]
|
1570 |
+
|
1571 |
+
with torch.no_grad():
|
1572 |
+
|
1573 |
+
img = rearrange(img, 'B H W C -> B C H W')
|
1574 |
+
|
1575 |
+
img_resize = torch.nn.functional.interpolate(input=img,
|
1576 |
+
size=(1024, 1024),
|
1577 |
+
mode='bicubic',
|
1578 |
+
antialias=True)
|
1579 |
+
|
1580 |
+
img_var = img_transform(img_resize)
|
1581 |
+
img_var = Variable(img_var)
|
1582 |
+
img_var = img_var.to(dtype=torch_dtype, device=torch_device)
|
1583 |
+
|
1584 |
+
mask = []
|
1585 |
+
|
1586 |
+
mask.append(net(img_var))
|
1587 |
+
|
1588 |
+
prediction = torch.mean(torch.stack(mask, dim=0), dim=0)
|
1589 |
+
prediction = prediction.sigmoid()
|
1590 |
+
|
1591 |
+
prediction = torch.nn.functional.interpolate(input=prediction,
|
1592 |
+
size=(h_, w_),
|
1593 |
+
mode='bicubic',
|
1594 |
+
antialias=True)
|
1595 |
+
|
1596 |
+
prediction = prediction.squeeze(0)
|
1597 |
+
prediction = prediction.clamp(0, 1)
|
1598 |
+
|
1599 |
+
return prediction
|
1600 |
+
|
1601 |
+
|
1602 |
+
def do_infer_modular_cv(input_image_path, output_mask_path, net,
|
1603 |
+
all_transforms):
|
1604 |
+
|
1605 |
+
(img_transform, depth_transform, target_transform, to_pil,
|
1606 |
+
transforms_var) = all_transforms
|
1607 |
+
|
1608 |
+
img = load_image_torch(input_image_path)
|
1609 |
+
|
1610 |
+
h_, w_ = img.shape[1], img.shape[2]
|
1611 |
+
|
1612 |
+
with torch.no_grad():
|
1613 |
+
|
1614 |
+
img = rearrange(img, 'B H W C -> B C H W')
|
1615 |
+
|
1616 |
+
img_resize = torch.nn.functional.interpolate(input=img,
|
1617 |
+
size=(1024, 1024),
|
1618 |
+
mode='bicubic',
|
1619 |
+
antialias=True)
|
1620 |
+
|
1621 |
+
img_var = img_transform(img_resize)
|
1622 |
+
img_var = Variable(img_var)
|
1623 |
+
img_var = img_var.to(dtype=torch_dtype, device=torch_device)
|
1624 |
+
|
1625 |
+
mask = []
|
1626 |
+
|
1627 |
+
for transformer in transforms_var:
|
1628 |
+
rgb_trans = img_var.to(dtype=torch_dtype, device=torch_device)
|
1629 |
+
mask.append(net(rgb_trans))
|
1630 |
+
|
1631 |
+
prediction = torch.mean(torch.stack(mask, dim=0), dim=0)
|
1632 |
+
prediction = prediction.sigmoid()
|
1633 |
+
|
1634 |
+
prediction = torch.nn.functional.interpolate(input=prediction,
|
1635 |
+
size=(h_, w_),
|
1636 |
+
mode='bicubic',
|
1637 |
+
antialias=True)
|
1638 |
+
|
1639 |
+
prediction = prediction.squeeze(0)
|
1640 |
+
prediction = prediction.clamp(0, 1)
|
1641 |
+
|
1642 |
+
save_mask_torch(output_image_path=output_mask_path, mask=prediction)
|
1643 |
+
|
1644 |
+
|
1645 |
+
def do_infer_modular_cv_2(input_image_path, output_mask_path, net,
|
1646 |
+
all_transforms):
|
1647 |
+
|
1648 |
+
(img_transform, depth_transform, target_transform, to_pil,
|
1649 |
+
transforms_var) = all_transforms
|
1650 |
+
|
1651 |
+
img = load_image(input_image_path)
|
1652 |
+
w_, h_ = img.shape[0], img.shape[1]
|
1653 |
+
img_resize = cv2.resize(img, (1024, 1024), cv2.INTER_CUBIC)
|
1654 |
+
|
1655 |
+
with torch.no_grad():
|
1656 |
+
|
1657 |
+
# rgb_png_path = input_image_path
|
1658 |
+
# img = Image.open(rgb_png_path).convert('RGB')
|
1659 |
+
# w_, h_ = img.size
|
1660 |
+
|
1661 |
+
# img_resize = img.resize([256 * 4, 256 * 4], Image.BILINEAR)
|
1662 |
+
|
1663 |
+
# img_var = Variable(img_transform(img_resize).unsqueeze(0)).to(
|
1664 |
+
# dtype=torch_dtype, device=torch_device)
|
1665 |
+
|
1666 |
+
img_resize = torch.from_numpy(img_resize)
|
1667 |
+
img_resize = img_resize.to(dtype=torch.float32)
|
1668 |
+
img_resize /= 255.0
|
1669 |
+
img_resize = rearrange(img_resize, 'H W C -> C H W')
|
1670 |
+
img_var = img_transform(img_resize)
|
1671 |
+
img_var = img_var.unsqueeze(0)
|
1672 |
+
img_var = Variable(img_var)
|
1673 |
+
img_var = img_var.to(dtype=torch_dtype, device=torch_device)
|
1674 |
+
|
1675 |
+
mask = []
|
1676 |
+
|
1677 |
+
for transformer in transforms_var:
|
1678 |
+
rgb_trans = transformer.augment_image(img_var)
|
1679 |
+
rgb_trans = rgb_trans.to(dtype=torch_dtype, device=torch_device)
|
1680 |
+
model_output = net(rgb_trans)
|
1681 |
+
deaug_mask = transformer.deaugment_mask(model_output)
|
1682 |
+
mask.append(deaug_mask)
|
1683 |
+
|
1684 |
+
prediction = torch.mean(torch.stack(mask, dim=0), dim=0)
|
1685 |
+
prediction = prediction.sigmoid()
|
1686 |
+
prediction = to_pil(prediction.data.squeeze(0).cpu())
|
1687 |
+
prediction = prediction.resize((w_, h_), Image.BILINEAR)
|
1688 |
+
prediction.save(output_mask_path)
|
1689 |
+
|
1690 |
+
|
1691 |
+
def do_infer_modular_cv_3(input_image_path, output_mask_path, net,
|
1692 |
+
all_transforms):
|
1693 |
+
|
1694 |
+
(img_transform, depth_transform, target_transform, to_pil,
|
1695 |
+
transforms_var) = all_transforms
|
1696 |
+
|
1697 |
+
img = load_image(input_image_path)
|
1698 |
+
w_, h_ = img.shape[0], img.shape[1]
|
1699 |
+
|
1700 |
+
with torch.no_grad():
|
1701 |
+
|
1702 |
+
# rgb_png_path = input_image_path
|
1703 |
+
# img = Image.open(rgb_png_path).convert('RGB')
|
1704 |
+
# w_, h_ = img.size
|
1705 |
+
|
1706 |
+
# img_resize = img.resize([256 * 4, 256 * 4], Image.BILINEAR)
|
1707 |
+
|
1708 |
+
# img_var = Variable(img_transform(img_resize).unsqueeze(0)).to(
|
1709 |
+
# dtype=torch_dtype, device=torch_device)
|
1710 |
+
|
1711 |
+
img_resize = torch.from_numpy(img)
|
1712 |
+
img_resize = img_resize.to(dtype=torch.float32)
|
1713 |
+
img_resize = rearrange(img_resize, 'H W C -> C H W')
|
1714 |
+
img_resize = img_resize.unsqueeze(0)
|
1715 |
+
|
1716 |
+
img_resize = torch.nn.functional.interpolate(input=img_resize,
|
1717 |
+
size=(1024, 1024),
|
1718 |
+
mode='bicubic',
|
1719 |
+
antialias=True)
|
1720 |
+
|
1721 |
+
img_resize = img_resize.squeeze(0)
|
1722 |
+
img_resize = rearrange(img_resize, 'C H W -> H W C')
|
1723 |
+
|
1724 |
+
img_resize = img_resize.to(dtype=torch.float32)
|
1725 |
+
img_resize /= 255.0
|
1726 |
+
img_resize = rearrange(img_resize, 'H W C -> C H W')
|
1727 |
+
img_var = img_transform(img_resize)
|
1728 |
+
img_var = img_var.unsqueeze(0)
|
1729 |
+
img_var = Variable(img_var)
|
1730 |
+
img_var = img_var.to(dtype=torch_dtype, device=torch_device)
|
1731 |
+
|
1732 |
+
mask = []
|
1733 |
+
|
1734 |
+
for transformer in transforms_var:
|
1735 |
+
rgb_trans = transformer.augment_image(img_var)
|
1736 |
+
rgb_trans = rgb_trans.to(dtype=torch_dtype, device=torch_device)
|
1737 |
+
model_output = net(rgb_trans)
|
1738 |
+
deaug_mask = transformer.deaugment_mask(model_output)
|
1739 |
+
mask.append(deaug_mask)
|
1740 |
+
|
1741 |
+
prediction = torch.mean(torch.stack(mask, dim=0), dim=0)
|
1742 |
+
prediction = prediction.sigmoid()
|
1743 |
+
prediction = to_pil(prediction.data.squeeze(0).cpu())
|
1744 |
+
prediction = prediction.resize((w_, h_), Image.BILINEAR)
|
1745 |
+
prediction.save(output_mask_path)
|
1746 |
+
|
1747 |
+
|
1748 |
+
def do_infer_modular_cv_4(input_image_path, output_mask_path, net,
|
1749 |
+
all_transforms):
|
1750 |
+
|
1751 |
+
(img_transform, depth_transform, target_transform, to_pil,
|
1752 |
+
transforms_var) = all_transforms
|
1753 |
+
|
1754 |
+
img = load_image(input_image_path)
|
1755 |
+
w_, h_ = img.shape[0], img.shape[1]
|
1756 |
+
|
1757 |
+
with torch.no_grad():
|
1758 |
+
|
1759 |
+
img_resize = torch.from_numpy(img)
|
1760 |
+
img_resize = img_resize.to(dtype=torch.float32)
|
1761 |
+
img_resize /= 255.0
|
1762 |
+
img_resize = img_resize.unsqueeze(0)
|
1763 |
+
|
1764 |
+
img_resize = rearrange(img_resize, 'B H W C -> B C H W')
|
1765 |
+
|
1766 |
+
img_resize = torch.nn.functional.interpolate(input=img_resize,
|
1767 |
+
size=(1024, 1024),
|
1768 |
+
mode='bicubic',
|
1769 |
+
antialias=True)
|
1770 |
+
|
1771 |
+
img_resize = img_resize.squeeze(0)
|
1772 |
+
img_var = img_transform(img_resize)
|
1773 |
+
img_var = img_var.unsqueeze(0)
|
1774 |
+
img_var = Variable(img_var)
|
1775 |
+
img_var = img_var.to(dtype=torch_dtype, device=torch_device)
|
1776 |
+
|
1777 |
+
mask = []
|
1778 |
+
|
1779 |
+
for transformer in transforms_var:
|
1780 |
+
rgb_trans = transformer.augment_image(img_var)
|
1781 |
+
rgb_trans = rgb_trans.to(dtype=torch_dtype, device=torch_device)
|
1782 |
+
model_output = net(rgb_trans)
|
1783 |
+
deaug_mask = transformer.deaugment_mask(model_output)
|
1784 |
+
mask.append(deaug_mask)
|
1785 |
+
|
1786 |
+
prediction = torch.mean(torch.stack(mask, dim=0), dim=0)
|
1787 |
+
prediction = prediction.sigmoid()
|
1788 |
+
prediction = to_pil(prediction.data.squeeze(0).cpu())
|
1789 |
+
prediction = prediction.resize((w_, h_), Image.BILINEAR)
|
1790 |
+
prediction.save(output_mask_path)
|
1791 |
+
|
1792 |
+
|
1793 |
+
def do_infer_modular_cv_5(input_image_path, output_mask_path, net,
|
1794 |
+
all_transforms):
|
1795 |
+
|
1796 |
+
(img_transform, depth_transform, target_transform, to_pil,
|
1797 |
+
transforms_var) = all_transforms
|
1798 |
+
|
1799 |
+
img = load_image(input_image_path)
|
1800 |
+
w_, h_ = img.shape[0], img.shape[1]
|
1801 |
+
|
1802 |
+
with torch.no_grad():
|
1803 |
+
|
1804 |
+
img_resize = torch.from_numpy(img)
|
1805 |
+
img_resize = img_resize.to(dtype=torch.float32)
|
1806 |
+
img_resize /= 255.0
|
1807 |
+
img_resize = img_resize.unsqueeze(0)
|
1808 |
+
|
1809 |
+
img_resize = rearrange(img_resize, 'B H W C -> B C H W')
|
1810 |
+
|
1811 |
+
img_resize = torch.nn.functional.interpolate(input=img_resize,
|
1812 |
+
size=(1024, 1024),
|
1813 |
+
mode='bicubic',
|
1814 |
+
antialias=True)
|
1815 |
+
|
1816 |
+
img_var = img_transform(img_resize)
|
1817 |
+
img_var = Variable(img_var)
|
1818 |
+
img_var = img_var.to(dtype=torch_dtype, device=torch_device)
|
1819 |
+
|
1820 |
+
mask = []
|
1821 |
+
|
1822 |
+
for transformer in transforms_var:
|
1823 |
+
rgb_trans = transformer.augment_image(img_var)
|
1824 |
+
rgb_trans = rgb_trans.to(dtype=torch_dtype, device=torch_device)
|
1825 |
+
model_output = net(rgb_trans)
|
1826 |
+
deaug_mask = transformer.deaugment_mask(model_output)
|
1827 |
+
mask.append(deaug_mask)
|
1828 |
+
|
1829 |
+
prediction = torch.mean(torch.stack(mask, dim=0), dim=0)
|
1830 |
+
prediction = prediction.sigmoid()
|
1831 |
+
prediction = to_pil(prediction.data.squeeze(0).cpu())
|
1832 |
+
prediction = prediction.resize((w_, h_), Image.BILINEAR)
|
1833 |
+
prediction.save(output_mask_path)
|
1834 |
+
|
1835 |
+
|
1836 |
+
def do_infer_modular_cv_6(input_image_path, output_mask_path, net,
|
1837 |
+
all_transforms):
|
1838 |
+
|
1839 |
+
(img_transform, depth_transform, target_transform, to_pil,
|
1840 |
+
transforms_var) = all_transforms
|
1841 |
+
|
1842 |
+
img = load_image(input_image_path)
|
1843 |
+
w_, h_ = img.shape[0], img.shape[1]
|
1844 |
+
|
1845 |
+
with torch.no_grad():
|
1846 |
+
|
1847 |
+
img_resize = torch.from_numpy(img)
|
1848 |
+
img_resize = img_resize.to(dtype=torch.float32)
|
1849 |
+
img_resize /= 255.0
|
1850 |
+
img_resize = img_resize.unsqueeze(0)
|
1851 |
+
|
1852 |
+
img_resize = rearrange(img_resize, 'B H W C -> B C H W')
|
1853 |
+
|
1854 |
+
img_resize = torch.nn.functional.interpolate(input=img_resize,
|
1855 |
+
size=(1024, 1024),
|
1856 |
+
mode='bicubic',
|
1857 |
+
antialias=True)
|
1858 |
+
|
1859 |
+
img_var = img_transform(img_resize)
|
1860 |
+
img_var = Variable(img_var)
|
1861 |
+
img_var = img_var.to(dtype=torch_dtype, device=torch_device)
|
1862 |
+
|
1863 |
+
mask = []
|
1864 |
+
|
1865 |
+
for transformer in transforms_var:
|
1866 |
+
rgb_trans = img_var.to(dtype=torch_dtype, device=torch_device)
|
1867 |
+
mask.append(net(rgb_trans))
|
1868 |
+
|
1869 |
+
prediction = torch.mean(torch.stack(mask, dim=0), dim=0)
|
1870 |
+
prediction = prediction.sigmoid()
|
1871 |
+
prediction = to_pil(prediction.data.squeeze(0).cpu())
|
1872 |
+
prediction = prediction.resize((w_, h_), Image.BILINEAR)
|
1873 |
+
prediction.save(output_mask_path)
|
1874 |
+
|
1875 |
+
|
1876 |
+
def do_infer_modular_cv_7(input_image_path, output_mask_path, net,
|
1877 |
+
all_transforms):
|
1878 |
+
|
1879 |
+
(img_transform, depth_transform, target_transform, to_pil,
|
1880 |
+
transforms_var) = all_transforms
|
1881 |
+
|
1882 |
+
img = load_image_torch(input_image_path)
|
1883 |
+
|
1884 |
+
h_, w_ = img.shape[1], img.shape[2]
|
1885 |
+
|
1886 |
+
with torch.no_grad():
|
1887 |
+
|
1888 |
+
img = rearrange(img, 'B H W C -> B C H W')
|
1889 |
+
|
1890 |
+
img_resize = torch.nn.functional.interpolate(input=img,
|
1891 |
+
size=(1024, 1024),
|
1892 |
+
mode='bicubic',
|
1893 |
+
antialias=True)
|
1894 |
+
|
1895 |
+
img_var = img_transform(img_resize)
|
1896 |
+
img_var = Variable(img_var)
|
1897 |
+
img_var = img_var.to(dtype=torch_dtype, device=torch_device)
|
1898 |
+
|
1899 |
+
mask = []
|
1900 |
+
|
1901 |
+
for transformer in transforms_var:
|
1902 |
+
rgb_trans = img_var.to(dtype=torch_dtype, device=torch_device)
|
1903 |
+
mask.append(net(rgb_trans))
|
1904 |
+
|
1905 |
+
prediction = torch.mean(torch.stack(mask, dim=0), dim=0)
|
1906 |
+
prediction = prediction.sigmoid()
|
1907 |
+
prediction = to_pil(prediction.data.squeeze(0).cpu())
|
1908 |
+
prediction = prediction.resize((w_, h_), Image.BILINEAR)
|
1909 |
+
prediction.save(output_mask_path)
|
1910 |
+
#+end_src
|
1911 |
+
|
1912 |
+
** Function for modular inference
|
1913 |
+
#+begin_src python :shebang #!/usr/bin/python3 :results output :tangle ./MVANet_inference.function.py
|
1914 |
+
def do_infer_modular(input_image_path, output_mask_path, net, all_transforms):
|
1915 |
+
# net = load_model(finetuned_MVANet_model_path)
|
1916 |
+
|
1917 |
+
(img_transform, depth_transform, target_transform, to_pil,
|
1918 |
+
transforms_var) = all_transforms
|
1919 |
+
|
1920 |
+
with torch.no_grad():
|
1921 |
+
rgb_png_path = input_image_path
|
1922 |
+
img = Image.open(rgb_png_path).convert('RGB')
|
1923 |
+
|
1924 |
+
w_, h_ = img.size
|
1925 |
+
# img_resize = img.resize([(w_ // 2) * 2, (h_ // 2) * 2], Image.BILINEAR)
|
1926 |
+
img_resize = img.resize([256 * 4, 256 * 4], Image.BILINEAR)
|
1927 |
+
# img_resize = img
|
1928 |
+
img_var = Variable(img_transform(img_resize).unsqueeze(0)).to(
|
1929 |
+
dtype=torch_dtype, device=torch_device)
|
1930 |
+
mask = []
|
1931 |
+
for transformer in transforms_var:
|
1932 |
+
rgb_trans = transformer.augment_image(img_var)
|
1933 |
+
rgb_trans = rgb_trans.to(dtype=torch_dtype, device=torch_device)
|
1934 |
+
model_output = net(rgb_trans)
|
1935 |
+
deaug_mask = transformer.deaugment_mask(model_output)
|
1936 |
+
mask.append(deaug_mask)
|
1937 |
+
|
1938 |
+
prediction = torch.mean(torch.stack(mask, dim=0), dim=0)
|
1939 |
+
prediction = prediction.sigmoid()
|
1940 |
+
prediction = to_pil(prediction.data.squeeze(0).cpu())
|
1941 |
+
prediction = prediction.resize((w_, h_), Image.BILINEAR)
|
1942 |
+
prediction.save(output_mask_path)
|
1943 |
+
#+end_src
|
1944 |
+
|
1945 |
+
** Function for inference
|
1946 |
+
#+begin_src python :shebang #!/usr/bin/python3 :results output :tangle ./MVANet_inference.function.py
|
1947 |
+
def do_infer():
|
1948 |
+
torch.cuda.set_device(0)
|
1949 |
+
args = {'crf_refine': True, 'save_results': True}
|
1950 |
+
|
1951 |
+
img_transform = transforms.Compose([
|
1952 |
+
transforms.ToTensor(),
|
1953 |
+
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
|
1954 |
+
])
|
1955 |
+
|
1956 |
+
depth_transform = transforms.ToTensor()
|
1957 |
+
target_transform = transforms.ToTensor()
|
1958 |
+
to_pil = transforms.ToPILImage()
|
1959 |
+
|
1960 |
+
transforms_var = tta.Compose([
|
1961 |
+
tta.HorizontalFlip(),
|
1962 |
+
tta.Scale(scales=[0.75, 1, 1.25],
|
1963 |
+
interpolation='bilinear',
|
1964 |
+
align_corners=False),
|
1965 |
+
])
|
1966 |
+
|
1967 |
+
net = inf_MVANet().to(dtype=torch_dtype, device=torch_device)
|
1968 |
+
pretrained_dict = torch.load(finetuned_MVANet_model_path,
|
1969 |
+
map_location=torch_device)
|
1970 |
+
model_dict = net.state_dict()
|
1971 |
+
pretrained_dict = {
|
1972 |
+
k: v
|
1973 |
+
for k, v in pretrained_dict.items() if k in model_dict
|
1974 |
+
}
|
1975 |
+
model_dict.update(pretrained_dict)
|
1976 |
+
net.load_state_dict(model_dict)
|
1977 |
+
net = net.to(dtype=torch_dtype, device=torch_device)
|
1978 |
+
net.eval()
|
1979 |
+
with torch.no_grad():
|
1980 |
+
rgb_png_path = '/home/asd/DATASETS/SD_BG_SWAP_TEST/comfyui_outputs/4/output_fooocus/bgswap-output.png'
|
1981 |
+
img = Image.open(rgb_png_path).convert('RGB')
|
1982 |
+
w_, h_ = img.size
|
1983 |
+
# img_resize = img.resize([(w_ // 2) * 2, (h_ // 2) * 2], Image.BILINEAR)
|
1984 |
+
img_resize = img.resize([256 * 4 , 256 * 4 ], Image.BILINEAR)
|
1985 |
+
# img_resize = img
|
1986 |
+
img_var = Variable(img_transform(img_resize).unsqueeze(0),
|
1987 |
+
volatile=True).cuda()
|
1988 |
+
mask = []
|
1989 |
+
for transformer in transforms_var:
|
1990 |
+
rgb_trans = transformer.augment_image(img_var)
|
1991 |
+
rgb_trans = rgb_trans.to(dtype=torch_dtype, device=torch_device)
|
1992 |
+
model_output = net(rgb_trans)
|
1993 |
+
deaug_mask = transformer.deaugment_mask(model_output)
|
1994 |
+
mask.append(deaug_mask)
|
1995 |
+
|
1996 |
+
prediction = torch.mean(torch.stack(mask, dim=0), dim=0)
|
1997 |
+
prediction = prediction.sigmoid()
|
1998 |
+
prediction = to_pil(prediction.data.squeeze(0).cpu())
|
1999 |
+
prediction = prediction.resize((w_, h_), Image.BILINEAR)
|
2000 |
+
prediction.save('./tmp.png')
|
2001 |
+
#+end_src
|
2002 |
+
|
2003 |
+
** MVANet_inference function
|
2004 |
+
#+begin_src python :shebang #!/usr/bin/python3 :results output :tangle ./MVANet_inference.function.py
|
2005 |
+
def main(item):
|
2006 |
+
net = inf_MVANet().cuda()
|
2007 |
+
pretrained_dict = torch.load(os.path.join(ckpt_path, item + '.pth'),
|
2008 |
+
map_location='cuda')
|
2009 |
+
model_dict = net.state_dict()
|
2010 |
+
pretrained_dict = {
|
2011 |
+
k: v
|
2012 |
+
for k, v in pretrained_dict.items() if k in model_dict
|
2013 |
+
}
|
2014 |
+
model_dict.update(pretrained_dict)
|
2015 |
+
net.load_state_dict(model_dict)
|
2016 |
+
net.eval()
|
2017 |
+
with torch.no_grad():
|
2018 |
+
for name, root in to_test.items():
|
2019 |
+
root1 = os.path.join(root, 'images')
|
2020 |
+
img_list = [os.path.splitext(f) for f in os.listdir(root1)]
|
2021 |
+
for idx, img_name in enumerate(img_list):
|
2022 |
+
|
2023 |
+
print('predicting for %s: %d / %d' %
|
2024 |
+
(name, idx + 1, len(img_list)))
|
2025 |
+
rgb_png_path = os.path.join(root, 'images',
|
2026 |
+
img_name[0] + '.png')
|
2027 |
+
rgb_jpg_path = os.path.join(root, 'images',
|
2028 |
+
img_name[0] + '.jpg')
|
2029 |
+
if os.path.exists(rgb_png_path):
|
2030 |
+
img = Image.open(rgb_png_path).convert('RGB')
|
2031 |
+
else:
|
2032 |
+
img = Image.open(rgb_jpg_path).convert('RGB')
|
2033 |
+
w_, h_ = img.size
|
2034 |
+
img_resize = img.resize([1024, 1024], Image.BILINEAR)
|
2035 |
+
img_var = Variable(img_transform(img_resize).unsqueeze(0),
|
2036 |
+
volatile=True).cuda()
|
2037 |
+
mask = []
|
2038 |
+
for transformer in transforms_var:
|
2039 |
+
rgb_trans = transformer.augment_image(img_var)
|
2040 |
+
model_output = net(rgb_trans)
|
2041 |
+
deaug_mask = transformer.deaugment_mask(model_output)
|
2042 |
+
mask.append(deaug_mask)
|
2043 |
+
|
2044 |
+
prediction = torch.mean(torch.stack(mask, dim=0), dim=0)
|
2045 |
+
prediction = prediction.sigmoid()
|
2046 |
+
prediction = to_pil(prediction.data.squeeze(0))
|
2047 |
+
prediction = prediction.resize((w_, h_), Image.BILINEAR)
|
2048 |
+
if args['save_results']:
|
2049 |
+
check_mkdir(os.path.join(ckpt_path, item, name))
|
2050 |
+
prediction.save(
|
2051 |
+
os.path.join(ckpt_path, item, name,
|
2052 |
+
img_name[0] + '.png'))
|
2053 |
+
#+end_src
|
2054 |
+
|
2055 |
+
** MVANet_inference execute
|
2056 |
+
#+begin_src python :shebang #!/usr/bin/python3 :results output :tangle ./MVANet_inference.execute.py
|
2057 |
+
def do_merge(path_image, path_mask, path_out):
|
2058 |
+
image = cv2.imread(path_image, cv2.IMREAD_COLOR)
|
2059 |
+
mask = cv2.imread(path_mask, cv2.IMREAD_GRAYSCALE)
|
2060 |
+
mask = (mask > 127).astype(dtype=np.uint8) * 255
|
2061 |
+
out = np.zeros((image.shape[0], image.shape[1], 4), dtype=np.uint8)
|
2062 |
+
out[:, :, 0:3] = image
|
2063 |
+
out[:, :, 3] = mask
|
2064 |
+
cv2.imwrite(path_out, out)
|
2065 |
+
|
2066 |
+
|
2067 |
+
if __name__ == '__main__':
|
2068 |
+
|
2069 |
+
# do_infer_modular_cv(
|
2070 |
+
# input_image_path=
|
2071 |
+
# '/home/asd/DATASETS/SD_BG_SWAP_TEST/comfyui_outputs/4/output_fooocus/bgswap-output.png',
|
2072 |
+
# output_mask_path='./tmp.png',
|
2073 |
+
# net=load_model(finetuned_MVANet_model_path),
|
2074 |
+
# all_transforms=load_transforms(),
|
2075 |
+
# )
|
2076 |
+
|
2077 |
+
# net = load_model(
|
2078 |
+
# HOME_DIR + '/dreambooth_experiments/MVANet/MVANet_cloth_segment_14.pth')
|
2079 |
+
|
2080 |
+
# net = load_model(
|
2081 |
+
# HOME_DIR +
|
2082 |
+
# '/dreambooth_experiments/MVANet/new_type_crop_with_midshot.pth')
|
2083 |
+
|
2084 |
+
# net = load_model('/home/asd/MODEL_CHECKPOINTS/MVANet/SKIN_SEGMENTATION/1/Model_4.pth')
|
2085 |
+
|
2086 |
+
net = load_model('/home/asd/MODEL_CHECKPOINTS/MVANet/SKIN_SEGMENTATION/3/Model_14.pth')
|
2087 |
+
|
2088 |
+
|
2089 |
+
# net = load_model(HOME_DIR +
|
2090 |
+
# '/dreambooth_experiments/MVANet/mvanet_normal_crop_2.pth')
|
2091 |
+
|
2092 |
+
DATA_DIR_BASE = HOME_DIR + '/DATASETS/cloth_segmentation_test_images.dir/cloth_segmentation_test_images/'
|
2093 |
+
|
2094 |
+
images = (
|
2095 |
+
'1370', '1371', '1372', '1373', '1374', '1375', '1376', '1377', '1378',
|
2096 |
+
'1379', '1380', '1381', '1382', '1383', '1384', '1385', '1386', '1387',
|
2097 |
+
'1388', '1389', '1390', '1391', '1392', '1393', '1394', '1395', '1396',
|
2098 |
+
'1397', '1398', '1399', '1400', '1401', '1402', '1403', '1404', '1405',
|
2099 |
+
'1406', '1407', '1408', '1409', '1410', '1411', '1412', '1413', '1414',
|
2100 |
+
'1415', '1539', '1541', '1542', '1543', '17320', '4129', '4190',
|
2101 |
+
'4191', '4192', '4193', '4202', '4203', '4204', '4207', '4208', '4209',
|
2102 |
+
'4210', '4213', '4214', '4221', '4222', '4223', '4224', '4225', '4226',
|
2103 |
+
'4227', '4228', '4229', '4230', '4231', '4232', '4233', '4234', '4235',
|
2104 |
+
'4236', '4237', '4238', '4239', '4240', '4241', '4242', '4251', '4252',
|
2105 |
+
'4253', '4254', '4255', '4256', '4257', '4258', '4259', '4260', '4261',
|
2106 |
+
'4262', '4263', '4264', '6581', '6642', '6647', '6656', '6660', '6690',
|
2107 |
+
'6696', '6724', '6767', '6771', '6788', '6791', '6807', '6821', '6824',
|
2108 |
+
'6833', '6847', '6850', '6879', '6941', '7001', '7070', '7083', '7092',
|
2109 |
+
'7093', '7119', '7191', '7220', '7252', '7264', '7276', '7278', '7281',
|
2110 |
+
'7290', '7301', '7312', '7340', '7398', '7404', '7412', '7429', '7439',
|
2111 |
+
'7478', '7491', '7631', '7687', '7699', '7719', '7770', '7784', '7793',
|
2112 |
+
'7811', '7829', '7861', '7864', '7868', '7980', '7987', '7990', '8069',
|
2113 |
+
'8083', '8100', '8108', '8227', '8323', '8329', '8358', '8383', '8401',
|
2114 |
+
'8415', '8488', '8515', '8518', '8560', '8565', '8595', '8639', '8676',
|
2115 |
+
'8690', '8691', '8701', '8703', '8723', '8726', '8756', '8783', '8801',
|
2116 |
+
'8820', '8826', '8842', '8865', '8874', '8875', '8882', '8911', '8946',
|
2117 |
+
'8947', '8969', '8979', '8983')
|
2118 |
+
|
2119 |
+
masks = [DATA_DIR_BASE + i + '/garment_mask.png' for i in images]
|
2120 |
+
out = [DATA_DIR_BASE + i + '/garment_transparent.png' for i in images]
|
2121 |
+
|
2122 |
+
images = [DATA_DIR_BASE + i + '/original.jpg' for i in images]
|
2123 |
+
|
2124 |
+
for i in range(len(images)):
|
2125 |
+
image = images[i]
|
2126 |
+
image = load_image_torch(image)
|
2127 |
+
mask = do_infer_tensor2tensor(image, net)
|
2128 |
+
save_mask_torch(output_image_path=masks[i], mask=mask)
|
2129 |
+
do_merge(path_image=images[i], path_mask=masks[i], path_out=out[i])
|
2130 |
+
|
2131 |
+
# img = load_image_torch(
|
2132 |
+
# '/home/asd/DATASETS/SD_BG_SWAP_TEST/comfyui_outputs/4/output_fooocus/bgswap-output.png'
|
2133 |
+
# )
|
2134 |
+
# # all_transforms = load_transforms()
|
2135 |
+
# masks = do_infer_tensor2tensor(img, net)
|
2136 |
+
# save_mask_torch(output_image_path='./tmp.png', mask=masks)
|
2137 |
+
#+end_src
|
2138 |
+
|
2139 |
+
** MVANet_inference unify
|
2140 |
+
#+begin_src sh :shebang #!/bin/sh :results output :tangle ./MVANet_inference.unify.sh
|
2141 |
+
. "${HOME}/dbnew.sh"
|
2142 |
+
|
2143 |
+
(
|
2144 |
+
echo '#!/usr/bin/python3'
|
2145 |
+
cat \
|
2146 |
+
'./MVANet_inference.import.py' \
|
2147 |
+
'./MVANet_inference.function.py' \
|
2148 |
+
'./MVANet_inference.class.py' \
|
2149 |
+
'./MVANet_inference.execute.py' \
|
2150 |
+
| expand | yapf3 \
|
2151 |
+
| grep -v '#!/usr/bin/python3' \
|
2152 |
+
;
|
2153 |
+
) > './MVANet_inference.py' \
|
2154 |
+
;
|
2155 |
+
#+end_src
|
2156 |
+
|
2157 |
+
** MVANet_inference run
|
2158 |
+
#+begin_src sh :shebang #!/bin/sh :results output :tangle ./MVANet_inference.run.sh
|
2159 |
+
. "${HOME}/dbnew.sh"
|
2160 |
+
python3 './MVANet_inference.py'
|
2161 |
+
#+end_src
|
2162 |
+
|
2163 |
+
* WORK SPACE
|
2164 |
+
|
2165 |
+
** elisp
|
2166 |
+
#+begin_src elisp
|
2167 |
+
(save-buffer)
|
2168 |
+
(org-babel-tangle)
|
2169 |
+
(shell-command "./MVANet_inference.unify.sh")
|
2170 |
+
#+end_src
|
2171 |
+
|
2172 |
+
#+RESULTS:
|
2173 |
+
: 0
|
2174 |
+
|
2175 |
+
** sh
|
2176 |
+
#+begin_src sh :shebang #!/bin/sh :results output
|
2177 |
+
realpath .
|
2178 |
+
cd /home/asd/GITHUB/aravind-h-v/dreambooth_experiments/MVANet
|
2179 |
+
#+end_src
|
main.org
CHANGED
@@ -4,8 +4,9 @@ cd $HOME/HUGGINGFACE/aravindhv10/Self-Correction-Human-Parsing
|
|
4 |
** ELISP
|
5 |
#+begin_src elisp
|
6 |
(save-buffer)
|
|
|
7 |
(org-babel-tangle)
|
8 |
-
(shell-command "./work.sh")
|
9 |
#+end_src
|
10 |
|
11 |
#+RESULTS:
|
@@ -13,38 +14,14 @@ cd $HOME/HUGGINGFACE/aravindhv10/Self-Correction-Human-Parsing
|
|
13 |
|
14 |
** ELISP
|
15 |
#+begin_src elisp
|
16 |
-
(shell-command "
|
17 |
#+end_src
|
18 |
|
19 |
-
**
|
20 |
-
#+begin_src
|
21 |
-
|
22 |
#+end_src
|
23 |
|
24 |
-
#+RESULTS:
|
25 |
-
#+begin_example
|
26 |
-
On branch main
|
27 |
-
Your branch is up to date with 'origin/main'.
|
28 |
-
|
29 |
-
Changes to be committed:
|
30 |
-
(use "git restore --staged <file>..." to unstage)
|
31 |
-
modified: .gitattributes
|
32 |
-
modified: .gitignore
|
33 |
-
new file: ComfyUI_AEMatter/AEMatter.run.sh
|
34 |
-
new file: ComfyUI_MVANet/MVANet_inference.run.sh
|
35 |
-
new file: ComfyUI_MVANet/download.sh
|
36 |
-
new file: checkpoints/MVANet/garment.pth
|
37 |
-
new file: checkpoints/MVANet/skin.pth
|
38 |
-
new file: demo/demo.jpg
|
39 |
-
new file: demo/demo_atr.png
|
40 |
-
new file: demo/demo_lip.png
|
41 |
-
new file: demo/demo_pascal.png
|
42 |
-
new file: demo/lip-visualization.jpg
|
43 |
-
new file: main.org
|
44 |
-
new file: training_code/MVANet/README.org
|
45 |
-
|
46 |
-
#+end_example
|
47 |
-
|
48 |
* Commit and push
|
49 |
#+begin_src sh :shebang #!/bin/sh :results output :tangle ./commit_and_push.sh
|
50 |
git commit -m 'Routine updates'
|
@@ -608,6 +585,7 @@ Changes to be committed:
|
|
608 |
utils/soft_dice_loss.py
|
609 |
utils/transforms.py
|
610 |
utils/warmup_scheduler.py
|
|
|
611 |
#+end_src
|
612 |
|
613 |
* List of files to remove
|
|
|
4 |
** ELISP
|
5 |
#+begin_src elisp
|
6 |
(save-buffer)
|
7 |
+
(save-some-buffers)
|
8 |
(org-babel-tangle)
|
9 |
+
(shell-command "./work.sh" "output_log_work")
|
10 |
#+end_src
|
11 |
|
12 |
#+RESULTS:
|
|
|
14 |
|
15 |
** ELISP
|
16 |
#+begin_src elisp
|
17 |
+
(shell-command "git status" "output_log_git_status")
|
18 |
#+end_src
|
19 |
|
20 |
+
** ELISP
|
21 |
+
#+begin_src elisp
|
22 |
+
(shell-command "./commit_and_push.sh" "output_log_commit_and_push")
|
23 |
#+end_src
|
24 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
* Commit and push
|
26 |
#+begin_src sh :shebang #!/bin/sh :results output :tangle ./commit_and_push.sh
|
27 |
git commit -m 'Routine updates'
|
|
|
585 |
utils/soft_dice_loss.py
|
586 |
utils/transforms.py
|
587 |
utils/warmup_scheduler.py
|
588 |
+
MVANet_Inference/README.org
|
589 |
#+end_src
|
590 |
|
591 |
* List of files to remove
|