whisper-small-ar / README.md
abuelnasr's picture
Upload config
07ac15e verified
metadata
datasets:
  - arbml/mgb2
license: apache-2.0
metrics:
  - wer
tags:
  - whisper-event
  - generated_from_trainer
  - hf-asr-leaderboard
model-index:
  - name: Whisper Small ar - Mohammad AlMarzouq
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: mozilla-foundation/common_voice_11_0
          type: mozilla-foundation/common_voice_11_0
          config: ar
          split: test
          args: ar
        metrics:
          - type: wer
            value: 43.14
            name: Wer
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: google/fleurs
          type: google/fleurs
          config: ar_eg
          split: test
          args: ar
        metrics:
          - type: wer
            value: 16.69
            name: Wer

openai/whisper-small

This model is a fine-tuned version of openai/whisper-small on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9750
  • Wer: 21.3693

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 64
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 10000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.3559 0.1 1000 0.9147 29.3252
0.3154 0.2 2000 1.1353 26.5718
0.359 0.3 3000 0.9208 25.3987
0.273 0.4 4000 0.9591 24.3877
0.2326 0.5 5000 0.9207 21.9052
0.2992 1.04 6000 0.9445 22.4556
0.2265 1.14 7000 0.9660 21.2230
0.2059 1.24 8000 0.9785 20.9551
0.2239 1.34 9000 0.9637 21.6300
0.2163 1.44 10000 0.9750 21.3693

Framework versions

  • Transformers 4.26.0.dev0
  • Pytorch 1.13.0+cu117
  • Datasets 2.7.1.dev0
  • Tokenizers 0.13.2