dmae1d-ATC64-v1 / dmae_config.py
flavioschneider's picture
Upload config
c22200e
from transformers import PretrainedConfig
from typing import Sequence
class DMAE1dConfig(PretrainedConfig):
model_type = "archinetai/dmae1d-ATC64-v1"
def __init__(
self,
in_channels: int = 2,
channels: int = 512,
multipliers: Sequence[int] = [3, 2, 1, 1, 1, 1, 1, 1],
factors: Sequence[int] = [1, 2, 2, 2, 2, 2, 2],
num_blocks: Sequence[int] = [1, 1, 1, 2, 2, 2, 2],
attentions: Sequence[int] = [0, 0, 0, 0, 0, 0, 0],
encoder_inject_depth: int = 3,
encoder_channels: int = 32,
encoder_factors: Sequence[int] = [1, 1, 2, 2, 1, 1],
encoder_multipliers: Sequence[int] = [32, 16, 8, 8, 4, 2, 1],
encoder_num_blocks: Sequence[int] = [4, 4, 4, 4, 4, 4],
bottleneck: str = 'tanh',
stft_use_complex: bool = True,
stft_num_fft: int = 1023,
stft_hop_length: int = 256,
**kwargs
):
self.in_channels = in_channels
self.channels = channels
self.multipliers = multipliers
self.factors = factors
self.num_blocks = num_blocks
self.attentions = attentions
self.encoder_inject_depth = encoder_inject_depth
self.encoder_channels = encoder_channels
self.encoder_factors = encoder_factors
self.encoder_multipliers = encoder_multipliers
self.encoder_num_blocks = encoder_num_blocks
self.bottleneck = bottleneck
self.stft_use_complex = stft_use_complex
self.stft_num_fft = stft_num_fft
self.stft_hop_length = stft_hop_length
super().__init__(**kwargs)