See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: Qwen/Qwen2.5-1.5B-Instruct
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 03792ded77426c26_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/03792ded77426c26_train_data.json
type:
field_input: intent
field_instruction: instruction
field_output: response
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: true
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 8
gradient_checkpointing: true
group_by_length: false
hub_model_id: ardaspear/328ebe63-8709-4d65-8c34-9534e7a16a15
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: 0
logging_steps: 3
lora_alpha: 128
lora_dropout: 0.1
lora_fan_in_fan_out: true
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: cosine
max_memory:
0: 72GB
max_steps: 150
micro_batch_size: 4
mlflow_experiment_name: /tmp/03792ded77426c26_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: false
sample_packing: false
saves_per_epoch: 4
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: leixa-personal
wandb_mode: online
wandb_name: 328ebe63-8709-4d65-8c34-9534e7a16a15
wandb_project: Gradients-On-Two
wandb_run: your_name
wandb_runid: 328ebe63-8709-4d65-8c34-9534e7a16a15
warmup_steps: 10
weight_decay: 0.01
xformers_attention: null
328ebe63-8709-4d65-8c34-9534e7a16a15
This model is a fine-tuned version of Qwen/Qwen2.5-1.5B-Instruct on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.7626
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 150
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0002 | 1 | 0.9274 |
0.8598 | 0.0022 | 13 | 0.8062 |
0.7931 | 0.0044 | 26 | 0.7795 |
0.7374 | 0.0066 | 39 | 0.7738 |
0.7546 | 0.0088 | 52 | 0.7691 |
0.7507 | 0.0110 | 65 | 0.7674 |
0.7062 | 0.0131 | 78 | 0.7658 |
0.6977 | 0.0153 | 91 | 0.7647 |
0.7749 | 0.0175 | 104 | 0.7638 |
0.7509 | 0.0197 | 117 | 0.7631 |
0.7201 | 0.0219 | 130 | 0.7627 |
0.7419 | 0.0241 | 143 | 0.7626 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 6