See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: fxmarty/tiny-llama-fast-tokenizer
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- ce18f8956f8ec3e2_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/ce18f8956f8ec3e2_train_data.json
type:
field_instruction: text
field_output: language
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: true
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 8
gradient_checkpointing: true
group_by_length: false
hub_model_id: ardaspear/58629422-fa9c-4ade-b34e-61b776fa7977
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: 0
logging_steps: 3
lora_alpha: 128
lora_dropout: 0.1
lora_fan_in_fan_out: true
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: cosine
max_memory:
0: 72GB
max_steps: 50
micro_batch_size: 4
mlflow_experiment_name: /tmp/ce18f8956f8ec3e2_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: false
sample_packing: false
saves_per_epoch: 4
sequence_len: 1024
special_tokens:
pad_token: </s>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: leixa-personal
wandb_mode: online
wandb_name: 58629422-fa9c-4ade-b34e-61b776fa7977
wandb_project: Gradients-On-Two
wandb_run: your_name
wandb_runid: 58629422-fa9c-4ade-b34e-61b776fa7977
warmup_steps: 10
weight_decay: 0.01
xformers_attention: null
58629422-fa9c-4ade-b34e-61b776fa7977
This model is a fine-tuned version of fxmarty/tiny-llama-fast-tokenizer on the None dataset. It achieves the following results on the evaluation set:
- Loss: 10.2649
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 50
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0034 | 1 | 10.3878 |
10.3918 | 0.0172 | 5 | 10.3852 |
10.3785 | 0.0344 | 10 | 10.3753 |
10.3663 | 0.0515 | 15 | 10.3586 |
10.3592 | 0.0687 | 20 | 10.3384 |
10.327 | 0.0859 | 25 | 10.3153 |
10.305 | 0.1031 | 30 | 10.2946 |
10.2931 | 0.1203 | 35 | 10.2784 |
10.2767 | 0.1375 | 40 | 10.2693 |
10.2656 | 0.1546 | 45 | 10.2656 |
10.2713 | 0.1718 | 50 | 10.2649 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 28
Model tree for ardaspear/58629422-fa9c-4ade-b34e-61b776fa7977
Base model
fxmarty/tiny-llama-fast-tokenizer